• Title/Summary/Keyword: pharmacokinetic parameter

Search Result 50, Processing Time 0.029 seconds

Effects of Combined Preparation (DWP715) Containing Alaska pollack Extract, Maltol, Ascorbic Acid and Nicotinamide on Decreasing of Blood Alcohol Concentration, Anti- fatigue and Anti-oxidation (북어엑스 및 말톨 함유 복합 조성물(DWP715)의 혈중 알콜농도 저하, 항피로 및 항산화 효과)

  • Cho, Jae-Youl;Kim, Ae-Ra;Yeon, Je-Duk;Lim, Seung-Wook;Lee, Jae-Hwi;Yoo, Eun-Sook;Yu, Young-Hyo;Park, Myung-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.167-172
    • /
    • 1997
  • Effect of combined preparation (DWP715) containing Alaska pollack extract, maltol, ascorbic acid and nicotinamide on decreasing of blood alcohol was evaluated in human blood. Treatment of DWP715 prior to administration of 25% alcohol (100 mL) decreased alcohol concentration in blood and showed significant difference after 2 hours. The pharmacokinetic parameters such as area under the concentration-time curve (AUC), $C_{max},\;T_{max}\;and\;T_{1/2}$ were also decreased and delayed when compared with control values. Effects of DWP715 on anti-fatigue and anti-oxidation activities were also studied in the restraint stress model using various parameters (GOT, GPT, LDH values and organ weights) on mild condition and examined through the content of lipid peroxide induced by 2% $CCl_4$ in mouse livers. While GPT level, thymus and adrenal weight were not influenced by DWP715 dosing, LDH, GOT level and spleen weight used as a parameter against fatigue and stress states were recovered almost to the nomal level. Furthermore, lipid peroxidation due to $CCl_4$ was significantly inhibited by DWP715 treatment. These results suggest that DWP715 seems to metabolize the blood alcohol rapidly and to restore the damaged liver and fatigue conditions which was caused by alcohol metabolism to normal condition.

  • PDF

Bioequivalence of Flucona Capsule to Diflucan Capsule (Fluconazole 50 mg) (디푸루칸 캅셀(플루코나졸 50 mg)에 대한 플루코나 캅셀의 생물학적 동등성)

  • Cho, Hea-Young;Kang, Hyun-Ah;Lee, Suk;Oh, In-Joon;Lim, Dong-Koo;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.135-140
    • /
    • 2003
  • Fluconazole is an orally active bis-triazole antifungal agent, which is used in the treatment of superficial and systemic candidiasis and in the treatment of cryptococcal infections in patients with the acquired immuno deficiency syndrome (AIDS). The purpose of the present study was to evaluate the bioequivalence of two fluconazole capsules, Diflucan (Pfizer Pharmaceuticals Korea Inc.) and Flucona (Korean Drug Pharmaceuticals Co., Ltd.), according to the guidelines of Korea Food and Drug Administration (KFDA). The fluconazole release from the two fluconazole capsules in vitro was tested using KP VII Apparatus II method at 0.1 M hydrochloride dissolution media. Twenty normal male volunteers, $23.60{\pm}1.88$ years in age and $63.57{\pm}6.17\;kg$ in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After three capsules containing 50 mg as fluconazole was orally administered, blood was taken at predetermined time intervals and the concentrations of fluconazole in serum were determined using HPLC method with UV detector. The dissolution profiles of two fluconazole capsules were very similar at 0.1 M hydrochloride dissolution media. Besides, the pharmacokinetic parameters such as $AUC_t,\;C_{max}\;and\;T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$ and $C_{max}$ and untransformed $T_{max}$. The results showed that the differences in $AUC_t,\;C_{max}\;and\;T_{max}$ between two capsules based on the Diflucan were 4.96%, 5.65% and -13.76%, respectively. There were no sequence effects between two capsules in these parameter. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log(0.8) to log(1.25) $(e.g.,\;log(1.01){\sim}log(1.08)\;and\;log(1.00){\sim}log(1.12)\;for\;AUC_t\;and\;C_{max},\;respectively)$, indicating that Flucona capsule is bioequivalent to Diflucan capsule.

Studies on the Disposition of Brazilin in rats (천연색소 Brazilin의 체내동태에 관한 연구)

  • 문창규;황지원;김지영;원현순;윤여표
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 1990
  • The disposition of Brazilin including plasma concentration-time profiles, excretions via urine and bile, and plasma protein binding was investigated after intravenous or oral administration of radio labeled Brazilin ($^3H-Brazilin$) to male Wistar rats. The main pharmac:okinetic parameters were as follows; $t\;_{ 1/2}$, 13.71 hr; AUC, $53.38\;\mu\textrm{g}{\cdot}hr/ml$; AUMC, $1013.4I\;\mu\textrm{g}{\cdot}hr^2/ml$, MRT, 18.95 hr; Vss, 17778 mllkg and CL, 936.77 ml/hr.kg. The 2nd peak was found in the plasma concentration-time profiles indicating potential enterohepatic circulation. The enterohepatic circulation was supported by the bile excretion. After oral administration, about 64.4 % of administered radioactivity was excreted into the bile within 10 hours and its excretion rate reached maximum at 3 hours after administration. The Vss was extremely high, 17.8 l/kg indicating distribution of brazilin in most organs (tissues) with high concentration of brazilin in some organs. Brazilin was distributed into most of organs (spleen, adrenal, pancreas, kidney, thymus, lung, heart, liver, prostate, epididymus, testis, fat, muscle and done) except brain. High concentration of Brazilin was detected especially in liver, kidney, epididymus and testis. Approximately, 62.9% and 44.1% of the dose was excreted for intravenous and oral administration, respectively. About 80% of the dose eventually excreted into urine was excreted within 24 hr after dosing. Plasma protein binding of brazilin resulted in $40\;{\pm}\;4%$ by ultrafiltration method.

  • PDF

Pharmacokinetics of oxytetracycline in olive flounder (Paralichthys olivaceus) by intramuscular injection (Oxytetracycline을 근육 주사한 넙치 (Paralichthys olivaceus)의 약물동태학적 특성)

  • Jung, Sung-Hee;Choi, Dong-Lim;Kim, Jin-Woo;Jo, Mi-Ra;Seo, Jung-Soo;Ji, Bo-Young
    • Journal of fish pathology
    • /
    • v.22 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • The pharmacokinetic properties of oxytetracycline (OTC) were studied after intramuscular injection to cultured olive flounder, Paralichthys olivaceus. Plasma concentrations of OTC were determined after dosage of 12.5, 25 and 50 ㎎/㎏ body weight in olive flounder (average 600 g, $23{\pm}1{^{\circ}C}$). Plasma samples were taken at 3, 5, 10, 15, 24, 32, 48, 72, 120, 168, 240 and 360 h post-dose. With 25 and 50 ㎎/㎏, the peak plasma concentrations of OTC, which attained at 5 h post-dose, were 0.99 and 1.49 $\mu{g}/m\ell$, respectively. However, the peak plasma concentration of 12.5 ㎎/㎏ was 0.35 $\mu{g}/m\ell$ after 10 h post-dose. Plasma concentrations of OTC were not measurable at 360 h post-dose in all doses. The kinetic profile of absorption, distribution and elimination of OTC in plasma were analyzed fitting to a 1-compartment model by Win-Nonlin program. The following parameters were calculated for 12.5, 25 and 50 ㎎/㎏ body weight, respectively: AUC (the area under the concentration-time curve)?D���D24.98, 44.67 and 50.45 $\mu{g}$ $h/m\ell$ $T_{1/2}$ (half-life) ?D���D0.42, 0.59 and 0.41 h; $T_{max}$ (time for maximum concentration)?D���D8.46, 6.34 and 2.66 h; $C_{max}$ (maximum concentration)?D���D0.30, 0.63 and 1.13 $\mu{g}/m\ell$.

Effects of temperature on pharmacokinetics of oxolinic acid in black rockfish, Sebastes schlegeli following oral administration (조피볼락, Sebastes schlegeli에 경구투여된 oxolinic acid의 약물동태에 미치는 수온의 영향)

  • Jung, Sung-Hee;Kim, Jin-Woo;Seo, Jung-Soo;Jee, Bo-Young;Park, Myoung-Ae
    • Journal of fish pathology
    • /
    • v.23 no.2
    • /
    • pp.221-227
    • /
    • 2010
  • Effects of temperature ($13{\pm}1.5^{\circ}C$, $23{\pm}1.5^{\circ}C$) on the pharmacokinetic properties of oxolinic acid (OA) were studied after oral administration to cultured black rockfish, Sebastes schlegeli. Serum concentrations of OA were determined using HPLC-UV detector after a single dosage of 60 mg/kg body weight (average about 500 g). The peak serum concentrations of OA at $23{\pm}1.5^{\circ}C$ and $13{\pm}1.5^{\circ}C$ were $0.60{\mu}/ml$ at 30 h and $2.22{\mu}g/ml$ at 10 h post-dose, respectively. Better absorption of OA was noted at $13{\pm}1.5^{\circ}C$ compared to $23{\pm}1.5^{\circ}C$. The elimination of OA from serum was considerably faster at $23{\pm}1.5^{\circ}C$ than at $13{\pm}1.5^{\circ}C$. Both absorption and elimination of OA were affected significantly by temperature. The kinetic profile of absorption, distribution and elimination of OA in serum was analyzed by fitting to a two compartment model, with WinNonlin program. The AUC, Tmax and Cmax at $23{\pm}1.5^{\circ}C$ were $42.16{\mu}g{\cdot}h/m\ell$, 26.13 h and $0.43{\mu}g/ml$, respectively. The AUC, Tmax and Cmax at $13{\pm}1.5^{\circ}C$ were $131.98{\mu}g{\cdot}h/ml$, 8.81 h and $2.04{\mu}g/ml$, respectively.

Effect of temperature on pharmacokinetics of nalidixic acid and piromidic acid in black rockfish Sebastes schlegeli following oral administration (조피볼락, Sebastes schlegeli에 경구투여된 nalidixic acid 및 piromidic acid의 약물동태에 미치는 수온의 영향)

  • Jung, Sung-Hee;Seo, Jung-Soo;Jee, Bo-Young;Kim, Jin-Woo;Park, Myoung-Ae
    • Journal of fish pathology
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2011
  • Effects of temperature ($13{\pm}1.5^{\circ}C$, $23{\pm}1.5^{\circ}C$) on the pharmacokinetic properties of nalidixic acid (NA) and piromidic acid (PA) were studied after oral administration to cultured black rockfish, Sebastes schlegeli. Serum concentrations of NA and PA were determined using HPLC-UV detector after a single dosage of 60 mg/kg body weight. At $23{\pm}1.5^{\circ}C$, the peak serum concentrations of NA and PA, which attained at 24 h post-dose, were 5.87 and $0.43\;{\mu}g/ml$, respectively. At $13{\pm}1.5^{\circ}C$, the peak serum concentrations of NA and PA, which attained at 10 h post-dose, were 6.22 and $1.57\;{\mu}g/ml$, respectively. Better absorption of PA was noted at $13{\pm}1.5^{\circ}C$ compared to $23{\pm}1.5^{\circ}C$. However, absorption of NA was not affected significantly by temperature. The elimination of NA and PA from serum of black rockfish was considerably faster at $23{\pm}1.5^{\circ}C$ than at $13{\pm}1.5^{\circ}C$. The kinetic profile of absorption, distribution and elimination of NA and PA in serum were analyzed by fitting to a one compartment model, with WinNonlin program. The AUC, $T_{1/2}$, $T_{max}$ and $C_{max}$, respectively, were: $161.25\;{\mu}g{\cdot}h/ml$, 0.15 h, 12.29 h and $8.91\;{\mu}g/ml$ at $23{\pm}1.5^{\circ}C$, and $134.12{\mu}g{\cdot}h/ml$, 0.18 h, 8.79 h and $5.00\;{\mu}g/ml$ at $13{\pm}1.5^{\circ}C$ with NA; $41.57\;{\mu}g{\cdot}h/ml$, 0.58 h, 8.24 h and $0.21\;{\mu}g/ml$ at $23{\pm}1.5^{\circ}C$, and $40.36\;{\mu}g{\cdot}h/ml$, 0.59 h, 5.04 h and $1.20\;{\mu}g/ml$ at $13{\pm}1.5^{\circ}C$ with PA.

Pharmacokinetic Study of Pyrazinamide Related to the Mechanism of the Renal Excretion (Pyrazinamide의 신배설기전에 관한 약동학적 연구)

  • Choi, Eung-Sang;Shin, Sang-Goo;Lee, Sun-Hee;Choi, Cheol-Hee;Kim, Yong-Sik;Lim, Jung-Kyoo;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 1987
  • The renal handling and tissue distribution of pyrazinamide were studied after administration of single dose intravenous injection for 15 min or constant infusion in New Zealand White rabbits. Peak pyrazinamide serum concentration ranged from 57.3 to $105.0{\mu}g/ml$ ($mean{\pm}SD;83.0{\pm}17.8$). The mean half-life of the a phase was $0.143{\pm}0.047$ hr while the ${\beta}$ phase ranged from 1.66 to 3.25 hr($mean{\pm}SD;2.38{\pm}0.57$). The mean steady-state volume of distribution in non-compartmental model was $0.935{\pm}0.362\;L/kg$ Excretion ratio of pyrazinamide was dramatically reduced from 1.02 to 0.30 when unbound serum pyrazinamide concentration was increased from 6.04 to $60.9\;{\mu}g/ml$. The urine flow dependency of renal clearance of pyrazinamide was demonstrated in steady-state serum concentration. The tissue/serum concentration ratio of pyrazinamide was highest in kidney and lowest in skeletal muscle among the tissues examined. The results suggested that a large fraction of pyrazinamide filtered by glomerulus and secreted by renal tubule was reabsorbed and this tubular reabsorption of pyrazinamide might be greatly influenced by urine flow.

  • PDF

Pharmacokinetics of oxolinic acid in cultured olive flounder Paralichthys olivaceus by oral administration, injection and dipping (Oxolinic acid의 경구투여, 주사 및 약욕에 따른 넙치, Paralichthys olivaceus 체내 약물동태학적 특성)

  • Jung, Sung-Hee;Choi, Dong-Lim;Kim, Jin-Woo;Jo, Mi-Ra;Jee, Bo-Young;Seo, Jung-Soo
    • Journal of fish pathology
    • /
    • v.22 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • The pharmacokinetic properties of oxolinic acid (OA) were studied after oral administration, intraperitoneal injection and dipping to cultured olive flounder, Paralichthys olivaceus (average 90 g, $23{\pm}1{^{\circ}C}$). Plasma samples were taken at 3, 5, 10, 15, 24, 30, 48, 96 and 144 h post-dose. In oral dosage at 15, 30 and 60 ㎎/㎏, the peak plasma concentrations of OA, which attained at 10~15 h post-dose, were 1.92, 2.45 and 3.72 $\mu{g}/m\ell$, respectively. In intraperitoneal injection with 10 and 20 ㎎/㎏, the peak plasma concentrations of OA, which attained at 10 h post-dose, were 4.1 and 4.8 $\mu{g}/m\ell$, respectively. In dipping in 30 and 50 ppm for 1 h, peak concentrations were observed at 5 h and 30 h post-dose, were 0.22 and 0.38 $\mu{g}/m\ell$, respectively. The kinetic profile of absorption, distribution and elimination of OA in plasma were analyzed fitting to a one-compartment model by WinNonlin program. Calculated parameters for a single oral dosage of 15, 30 and 60 ㎎/㎏, respectively, were: AUC (the area under the concentration-time curve)=70.93, 120.0 and 141.86 $\mu{g}$ $h/m\ell$ $T_{max}$ (time for maximum concentration)=16.22, 20.39 and 17.33 h; $C_{max}$ (maximum concentration)=���D1.61, 2.40 and 3.01 $\mu{g}/m\ell$. Following intraperitoneal injection of 10 and 20 ㎎/㎏, these parameters were AUC=184.7 and 315.92 $\mu{g}$ $h/m\ell$ $T_{max}$=5.91 and 6.26 h; $C_{max}$=4.19 and 4.45 $\mu{g}/m\ell$. Following dipping at 30 and 50 ppm, these parameters were AUC=17.58 and 21.69 $\mu{g}$ $h/m\ell$ $T_{max}$=19.08 and 31.43 h; $C_{max}$x=0.22 and 0.25 $\mu{g}/m\ell$.

Pharmacokinetics of amoxicillin trihydrate in cultured eel Anguilla japonica by single oral and intravenous administrations (Amoxicillin trihydrate의 단독 경구투여 및 정맥투여에 따른 뱀장어, Anguilla japonica 체내 약물동태학적 특성)

  • Jeon, Eun-Ji;Seo, Jeong-Soo;Kim, Jin-Do;Jung, Sung-Hee;Kim, Myoung-Sug;Hwang, Jee-Youn;Park, Myoung-Ae;Jee, Bo-Young;Kim, Jin-Woo;Kim, Yi-Cheong
    • Journal of fish pathology
    • /
    • v.23 no.3
    • /
    • pp.357-367
    • /
    • 2010
  • The pharmacokinetic properties of amoxicillin trihydrate (Amox) were studied after single oral administration and single intravenous injection to cultured eel, Anguilla japonica, respectively (average $220{\pm}10\;g$, $28{\pm}1^{\circ}C$). Plasma samples were taken at 3, 5, 10, 15, 24, 30, 48, 96 and 144 h post-dose. The kinetic profile of absorption, distribution and elimination of Amox in plasma were analyzed fitting to a two-compartment model by WinNonlin program. In oral dosage of 40 and 80 mg/kg body weight, the peak plasma concentrations of Amox, which attained at 3~12 h post-dose, were 3.4 and $3.3\;{\mu}g/ml$, respectively. In intravenous injection with 1 mg/kg, the peak plasma concentrations of Amox, which attained at 9 h post-dose, was $7.2\;{\mu}g/ml$. The following parmeters were calculated for a single oral dosage of 40 and 80 mg/kg body weight, respectively: AUC (the area under the concentration-time curve)= 464 and $667\;{\mu}g{\cdot}h/ml$; $T_{max}$ (time for maximum concentration)= 2.1 and 3.6 h; $C_{max}$ (maximum concentration)= 3.04 and $3.4\;{\mu}g/ml$. Following intravenous injection at 1 mg/kg, this parameters were AUC= $748\;{\mu}g{\cdot}h/ml$; $C_{max}=4.2\;{\mu}g/ml$. The apparent oral bioavailability at 40 and 80 mg/kg were 1.6 and 1.1%, respectively. Despite using the trihydrate form of amoxicillin, the oral bioavailability was low in eel.

Effect of temperature on pharmacokinetics of nalidixic acid, piromidic acid and oxolinic acid in olive flounder Paralichthys olivaceus following oral administration (넙치, Paralichthys olivaceus에 nalidixic acid, piromidic acid, oxolinic acid의 경구투여 약물동태에 미치는 수온의 영향)

  • Jung, Sung-Hee;Kim, Jin-Woo;Seo, Jung-Soo;Choi, Dong-Lim;Jee, Bo-Young;Park, Myoung-Ae
    • Journal of fish pathology
    • /
    • v.23 no.1
    • /
    • pp.57-67
    • /
    • 2010
  • Effects of temperature ($13{\pm}1.5^{\circ}C$, $23{\pm}1.5^{\circ}C$) on the pharmacokinetic properties of nalidixic acid (NA), piromidic acid (PA) and oxolinic acid (OA) were studied after oral administration to cultured olive flounder, Paralichthys olivaceus. Serum concentrations of these antimicrobials were determined after oral administration of a single dosage of 60 mg/kg body weight (average 700 g). At $23{\pm}1.5^{\circ}C$, the peak serum concentrations of NA, PA and OA, which attained at 10 h, 24 h and 30 h post-dose, were 11.55, 3.79 and $1.12{\mu}g/m\ell$, respectively. At $13{\pm}1.5^{\circ}C$, the peak serum concentrations of NA, PA and OA, which attained at 10 h, 15 h and 30 h post-dose, were 6.36, 1.4 and $1.01{\mu}g/m\ell$, respectively. Better absorption of NA and PA was noted at $23{\pm}1.5^{\circ}C$ compared to $23{\pm}13^{\circ}C$. The elimination of NA from serum of olive flounder was considerably faster at $23{\pm}1.5^{\circ}C$ than at $13{\pm}1.5^{\circ}C$. However, both absorption and elimination of OA were not affected significantly by temperature. The kinetic profile of absorption, distribution and elimination of these antimicrobials in serum were analyzed by fitting to a one- and two compartment model, with WinNonlin program. In the one compartment model for NA, AUC, Tmax and Cmax at $23{\pm}1.5^{\circ}C$ were $258.26{\mu}g{\cdot}h/m\ell$, 10.67 h and $8.91{\mu}g/m\ell$, respectively. The AUC, $T_{max}$ and $C_{max}$ at $13{\pm}1.5^{\circ}C$ were $341.45 {\mu}g{\cdot}h/m\ell$, 7.72 h and $6.23{\mu}g/m\ell$, respectively. In the one compartment model for PA, AUC, $T_{max}$ and $C_{max}$ at $23{\pm}1.5^{\circ}C$ were $248.12{\mu}g{\cdot}h/m\ell$, 21.15 h and $3.09{\mu}g/m\ell$, respectively. The AUC, $T_{max}$ and $C_{max}$ at $13{\pm}1.5^{\circ}C$ were $103.89{\mu}g{\cdot}h/m\ell$, 12.89 h and $1.22{\mu}g/m\ell$, respectively. In the two compartment model for OA, AUC, $T_{max}$ and $C_{max}$ at $23{\pm}1.5^{\circ}C$ were $138.20{\mu}g{\cdot}h/m\ell$, 23.95 h and $1.06{\mu}g/m\ell$, respectively. The AUC, $T_{max}$ and $T_{max}$ at $13{\pm}1.5^{\circ}C$ were $159.10{\mu}g{\cdot}h/m\ell$, 28.03 h and $1.02{\mu}g/m\ell$, respectively.