• 제목/요약/키워드: petroleum wastewater

검색결과 36건 처리시간 0.021초

울산지역의 대체 상수원 개발 및 용수대책 (Search for Available Water Sources and Water Resources Management of Ulsan Area)

  • 김성득;이병호;조홍제;박흥석;김영혜
    • 상하수도학회지
    • /
    • 제8권3호
    • /
    • pp.34-40
    • /
    • 1994
  • Industrial Complex in Ulsan is one of the most important areas in the nation. It includes ship building, automobile production, petroleum industry, non-metalic industry, and related industries. However, water for drinking and industry use has been and will be short seriously. Thus available drinking water sources were searched. By rebuilding the two existing dams 20m higher than the present levels, $500,000m^3/day$(for 200days) of water sources may be produced. Additional volume of $13,000m^3/day$(for 200days) can be obtained by a number of small dam construction in the vincity area. Underground water of about $50,000m^3/day$ may also be available. The total of $680,000m^3/day$ could be produced in Ulsan area, which is enough for the population of 1,200,000 in Ulsan area even after year 2011. This newly searched volume of water may be free from pollution. Raising the dam levels may also prevent Ulsan city from chronic flooding problems. Additional advantage is that as much as the newly developed water resources can be supplied to the industrial complexes.

  • PDF

산업폐수에 대한 이화학적 분석과 물벼룩 생태독성의 비교 (Comparison between Ecotoxicity using Daphnia magna and Physiochemical Analyses of Industrial Effluent)

  • 이선희;이학성
    • 한국환경과학회지
    • /
    • 제23권7호
    • /
    • pp.1269-1275
    • /
    • 2014
  • Ecotoxicity assessments with the physiochemical water quality items and the bioassay test using Daphnia magna were conducted for 18 selected effluents of 6 industrial types (metal processing, petroleum refining, synthetic textile manufacturing, plating, alcohol beverage manufacturing, inorganic compound manufacturing) being detected toxicity from industrial effluent in Ulsan city, and the interrelationship between total toxic unit (${\Sigma}TU$) and concentrations of Water Quality Conservation Act in Korea were investigated. The average toxic unit(TU) of effluents for 6 industrial types displayed the following ascending order: petroleum refining (0.2) < synthetic textile manufacturing (0.6) < alcohol beverage manufacturing (0.9) < metal processing (1.3) ${\leq}$ inorganic compound manufacturing (1.3) < plating (3.0). These values were less than effluent permission standard. Based on the result of substances causing ecotoxicity, the correlation analysis was not easy because most of heavy metals were not detected or were less than effluent permission standard. Toxicological assessment of industrial effluent was suitable for the evaluation of the mixture toxicity for pollutant. The whole effluent toxicity test using a variety of species was needed for the evaluation of industrial wastewater.

미세조류 이용 바이오디젤 항공유 기술개발 동향 연구 (A Research of Trends in Development of Bio-Diesel Aviation Fuel Technology using Microalgae)

  • 윤한영
    • 한국항공운항학회지
    • /
    • 제32권2호
    • /
    • pp.151-158
    • /
    • 2024
  • Microalgae are aquatic microorganisms capable of photosynthetic growth using water, carbon dioxide and sunlight, and can replace petroleum for transportation. It is receiving great attention as a potential next-generation biological resource. The microalgae biodiesel production process is largely based on the development of highly efficient strains and mass production. It consists of cultivation, harvesting, oil extraction, fuel conversion and by-product utilization. Currently, microalgae diesel is 3-5 times more expensive than petroleum diesel. However, with the optimization of each element technology and the development of integrated systems, not only biofuels, but also industrial materials, wastewater treatment, and greenhouse gases As application expands to various fields such as abatement, the timing of commercialization may be brought forward. Oil prices have recently fallen due to the influence of sail gas. Although there has been a significant drop, global warming is an urgent challenge for current and future generations. In particular, Korea, which does not have oil resources, We must always prepare for political environmental changes, high oil prices, and energy crises. In this paper, the need for eco-friendly biofuel for carbon dioxide conversion. In addition to research trends, domestic and international research trends, and economic prospects, the concept of microalgae and the element technologies of the biodiesel production process are briefly discussed introduced.

기름/물 분리를 위한 제올라이트 기반의 세라믹 분리막에 대한 총설 (A Review on Zeolite-based Ceramic Membrane for Oil/Water Separation)

  • 이주엽;라즈쿠마 파텔;김종학
    • 멤브레인
    • /
    • 제32권2호
    • /
    • pp.83-90
    • /
    • 2022
  • 정유소와 석유 공장에서 발생하는 폐수는 심각한 환경오염으로 이어진다. 기름이 있는 물을 정수 처리하는 데에는 많은 방법이 존재하지만, 가장 효과적인 방법은 막을 이용한 기술이다. 물에서 기름기를 제거하는 데 사용되는 유기재료로 만들어진 고분자 막은 파울링이라는 고질적인 문제를 가지고 있다. 무기성 막은 수명이 길다는 점에서 유기성 분리막보다 효율적이다. 제올라이트 막은 우수한 화학적 안정성을 갖고 있으며 오랜 기간 재활용할 수 있다. 막에서 친수성의 존재는 막의 수 투과량을 증가시킨다. 제올라이트로 만들어진 세라믹 분리막은 물과 기름을 분리하는 데 사용되는 효율적인 무기막 중 하나이다. 본 리뷰논문은 i) 순수 제올라이트 막과 ii) 다른 물질과 혼합된 제올라이트 복합막, 2가지로 분류되는 제올라이트 기반의 무기막을 사용하는 물과 기름 분리 기술을 중점으로 다루고 있다.

Hydride Generation Atomic Absorption Spectrometry를 이용한 석유정제폐수중의 selenium 분석 (Analysis of selenium in oil refinery wastewater by hydride generation atomic absorption spectrometry)

  • 천미희;김철;이현주;강임석
    • 분석과학
    • /
    • 제16권5호
    • /
    • pp.399-406
    • /
    • 2003
  • 본 연구는 수소화물 발생장치가 부착된 원자흡광 광도계 (HG-AAS)를 이용하여 비교적 고농도의 Se을 함유하고 있는 석유정제 폐수의 Se 분석을 위하여 적합한 분석조건을 선정하고자 수행되었다. Se(VI)의 Se(IV)로의 환원 실험에서 폐수량 10 mL, 염산 주입량 10 mL, 가열시간 30분이 최적 환원조건으로 결정되었다. 폐수의 조성성분과 유기물의 농도가 높은 경우에는 Se 회수율이 감소하였다. 따라서 3가지 산분해법 ($HNO_3/HClO_4$ 분해, $KMnO_4$ 분해 및 초단파 산분해)에 의한 유기물, 석유화합물 분해 및 유기성 Se(org.), Se(IV) 산화에 따른 Se 회수율을 검토하였다. 실험결과 산분해전 약 50~80%이었던 Se 회수율은 모든 산분해에서 90%이상이었으며 특히, 초단파 산분해에 의한 Se 회수율이 가장 높은 것으로 나타났다. 그러므로 HG-AAS를 이용한 석유정제 폐수의 Se 분석시에는 초단파 산분해후 염산 처리를 하는 전처리 과정이 가장 적합한 것으로 나타났다.

유류오염 지하수 정화를 위한 양수처리법 적용시 지하수위 변화 및 수처리장치의 효율평가 (Efficiency Assessment of Wastewater Treatment Plant and Groundwater Level by Pump and Treat Technology Applied for Petroleum Contaminated Site)

  • 조장환;김준호;박민규;김태형;최연수;최상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.33-38
    • /
    • 2014
  • This study was performed to evaluate the applicability of pump and treat technology as well as to identify the changes of groundwater level by continuous pumping at the petroleum contaminated site. A total of 9 monitoring wells were installed at the site and the contaminant concentrations, TPH, benzene, toluene, ethylbenzene and xylene, of groundwater were measured. With the results of the groundwater monitoring, a total of 9 wells were set up for pumping contaminated groundwater in 3 locations. The waste water treatment facility with a capacity of $10m^3/hr$ was installed in the site and operated for about 1 year. The concentrations of the contaminated groundwater from the 3 pumping wells were exceeded groundwater regulation for benzene and TPH. However, the effluent concentration of benzene and TPH was under the regulation showing the maximum level of 0.011 mg/L and 1.2 mg/L during the operation periods. Groundwater levels were decreased by continuous pumping and those were not recovered during the operation period. Groundwater levels of PW-1,2, PW-3,4,5,6 and PW-7,8,9 were decreased about 5 m, 0.7 m, 2 m, respectively. The hydraulic conductivity (K) of the region of PW-1,2, PW-3,4,5,6 and PW-7,8,9 was estimated to be $6.143{\times}10^{-5}cm/sec$, $2.675{\times}10^{-5}cm/sec$, $1.198{\times}10^{-4}cm/sec$. Groundwater level was seemed to be affected not by hydraulic conductivity but by morphological effect. These results show that the pump and treat technology has high applicability for the restoration of petroleum contaminated groundwater but needs continuous monitoring to prevent rapid groundwater drawdown.

Petrochemical effluent treatment using natural coagulants and an aerobic biofilter

  • Bandala, Erick R.;Tiro, Juan Bernardo;Lujan, Mariana;Camargo, Francisco J.;Sanchez-Salas, Jose Luis;Reyna, Silvia;Moeller, Gabriela;Torres, Luis G.
    • Advances in environmental research
    • /
    • 제2권3호
    • /
    • pp.229-243
    • /
    • 2013
  • Coagulation-flocculation (CF) was tested coupled with an aerobic biofilter to reduce total petroleum hydrocarbon (TPHs) concentration and toxicity from petrochemical wastewater. The efficiency of the process was followed using turbidity and chemical oxygen demand (COD). The biofilter was packed with a basaltic waste (tezontle) and inoculated with a bacterial consortium. Toxicity test were carried out using Lactuca sativa var. capitata seeds. Best results for turbidity removal were obtained using alum. Considerable turbidity removal was obtained when using Opuntia spp. COD removal with alum was 25%, for Opuntia powder it was 36%. The application of the biofilter allowed the removal of 70% of the remaining TPHs after 30 days with a biodegradation rate (BDR) value 47 $mgL^{-1}d^{-1}$. COD removal was slightly higher with BDR value 63 $mgL^{-1}d^{-1}$. TPH kinetics allowed a degradation rate constant equal to $4.05{\times}10^{-2}d^{-1}$. COD removal showed similar trend with $k=4.23{\times}10^{-2}d^{-1}$. Toxicity reduction was also successfully achieved by the combined treatment process.

Monitoring the Bacterial Community Dynamics in a Petroleum Refinery Wastewater Membrane Bioreactor Fed with a High Phenolic Load

  • Silva, Cynthia C.;Viero, Aline F.;Dias, Ana Carolina F.;Andreote, Fernando D.;Jesus, Ederson C.;De Paula, Sergio O.;Torres, Ana Paula R.;Santiago, Vania M.J.;Oliveira, Valeria M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.21-29
    • /
    • 2010
  • The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from the 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

유류오염대수층 공기분사공정상의 미생물 제한효소다형성법 적용 평가 (Analysis of Microbial Community in the TPH-Contaminated Groundwater for Air Sparging using Terminal-Restriction Fragment Length Polymorphism)

  • 이준호;이상훈;조재창;박갑성
    • 한국물환경학회지
    • /
    • 제22권4호
    • /
    • pp.590-598
    • /
    • 2006
  • In-situ Air sparging (IAS) is a groundwater remediation technique, in which organic contaminants volatilize into air form the saturated to vadose zone. This study was carried out to evaluate the effect of sludge and soil microbial community structure on air sparging of Total Petroleum Hydrocarbons (TPH) contaminated groundwater soils. In the laboratory, diesel (10,000 mg TPH/kg) contaminated saturated soil. The Air was injected in intermittent (Q=1500 mL/min, 10 minute injection and 10 minute idle) modes. For Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis of eubacterial communities in sludge of wastewater treatment plants and soil of experiment site, the 16S rDNA was amplified by Polymerase Chain Reaction (PCR) from the sludge and the soil. The obtained 16S rDNA fragments were digested with Msp I and separated by electrophoresis gel. We found various sequence types for experiment with sludge soil samples that were closely related to Agrococcus, Flavobacterium, Thermoanaerobacter, Flexibacter and Shewanella, etc, in the clone library. The results of the present study suggests that T-RFLP method may be applied as a useful tool for the monitoring in the TPH contaminated soil the fate of microorganisms in natural microbial community.

Degradation of synthetic dye in water by solution plasma process

  • Panomsuwan, Gasidit;Morishita, Tetsunori;Kang, Jun;Rujiravanit, Ratana;Ueno, Tomonaga;Saito, Nagahiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권10호
    • /
    • pp.888-893
    • /
    • 2016
  • In this study, the solution plasma process was utilized with the aim of degrading synthetic dyes in water at atmospheric pressure. The experiments were conducted in a batch-type reactor consisting of a symmetric wire-wire electrode configuration with rhodamine B (RhB) as the target synthetic dye. The effects of the plasma treatment time and initial dye concentration on the RhB degradation were investigated by monitoring the change in absorbance of RhB solutions. The RhB solutions turned lighter in color and finally colorless with prolonged plasma treatment time, indicating the destruction of dye molecules. The RhB solutions were found to have degraded, following the first-order kinetic process. However, for high initial RhB concentrations, another kinetic process or factor seems to play a dominant role at the initial degradation stage. The fitted first-order rate constant decreased as the initial concentration increased. This result suggests that the degradation behavior and kinetic process of the RhB solution strongly depends on its initial concentration. The RhB degradation is considered to be due to a combination of factors, including the formation of chemically oxidative species, as well as the emission of intense UV radiation and high-energy electrons from the plasma. We believe that the solution plasma process may prove to be an effective and environment-friendly method for the degradation or remediation of synthetic dye in wastewater.