• Title/Summary/Keyword: petroleum generation

Search Result 82, Processing Time 0.023 seconds

A Study on Fuel Quality Characteristics of F-T Diesel for Production of BTL Diesel (BTL 디젤 생산을 위한 F-T 디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Sang-Bong;Lee, Yun-Je;Kang, Myung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.450-458
    • /
    • 2012
  • In order to reduce the effects of greenhouse gas (GHG) emissions, the South Korean government has announced a special platform of technologies as part of an effort to minimize global climate change. To further this effort, the Korean government has pledged to increase low-carbon and carbon neutral resources for biofuel derived from biomass to replace fossil and to decrease levels of carbon dioxide. In general, second generation biofuel produced form woody biomass is expected to be an effective avenue for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in road transport. It is important that under the new Korean initiative, pilot scale studies evolve practices to produce biomass-to-liquid (BTL) fuel. This study reports the quality characteristics of F-T(Fischer-Tropsch) diesel for production of BTL fuel. Synthetic F-Tdiesel fuel can be used in automotive diesel engines, pure or blended with automotive diesel, due to its similar physical properties to diesel. F-T diesel fuel was synthesized by Fischer-Tropsch (F-T) process with syngas($H_2$/CO), Fe basedcatalyst in low temperature condition($240^{\circ}C$). Synthetic F-T diesel with diesel compositions after distillation process is consisted of $C_{12}{\sim}C_{23+}$ mixture as a kerosine, diesel compositions of n-paraffin and iso-paraffin compounds. Synthetic F-T diesel investigated a very high cetane number, low aromatic composition and sulfur free level compared to automotive diesel. Synthetic F-T diesel also show The wear scar of synthetic F-T diesel show poor lubricity due to low content of sulfur and aromatic compounds compared to automotive diesel.

A Study on the Storage Stability and Malodor of Bio-Fuel oil (바이오중유의 저장안정성 및 악취특성 연구)

  • JANG, EUN-JUNG;PARK, CHEON-KYU;LEE, BONG-HEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.712-720
    • /
    • 2017
  • As Korean government has activated the renewable portfolio standard (RPS) since 2012, producers have been seeking and using the various renewable resources to meet the RPS quota. One of these efforts, Power Bio-Fuel oil demonstration project is being conducted to check the operability and compatibility with fossil fuel, Fuel oil (B-C) from 2014. The oil is a mixture of vegetable oil and animal fat or fatty acid ester of them and should satisfy some specification to use the power generation. The oil's quality and combustion characteristics are different from conventional oil, Fuel oil (B-C) in current power plant facility. In this study, it was investigated the storage stability and malodor intensity of Bio-Fuel oil.

Vertical axis wind turbine types, efficiencies, and structural stability - A Review

  • Rehman, Shafiqur;Rafique, Muhammad M.;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • Much advancement has been made in wind power due to modern technological developments. The wind energy technology is the world's fastest-growing energy option. More power can be generated from wind energy by the use of new design and techniques of wind energy machines. The geographical areas with suitable wind speed are more favorable and preferred for wind power deployment over other sources of energy generation. Today's wind turbines are mainly the horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs). HAWTs are commercially available in various sizes starting from a few kilowatts to multi-megawatts and are suitable for almost all applications, including both onshore and offshore deployment. On the other hand, VAWTs finds their places in small and residential wind applications. The objective of the present work is to review the technological development, available sizes, efficiencies, structural types, and structural stability of VAWTs. Structural stability and efficiencies of the VAWTS are found to be dependent on the structural shape and size.

A Research of Trends in Development of Bio-Diesel Aviation Fuel Technology using Microalgae (미세조류 이용 바이오디젤 항공유 기술개발 동향 연구)

  • Han-Young Yoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.151-158
    • /
    • 2024
  • Microalgae are aquatic microorganisms capable of photosynthetic growth using water, carbon dioxide and sunlight, and can replace petroleum for transportation. It is receiving great attention as a potential next-generation biological resource. The microalgae biodiesel production process is largely based on the development of highly efficient strains and mass production. It consists of cultivation, harvesting, oil extraction, fuel conversion and by-product utilization. Currently, microalgae diesel is 3-5 times more expensive than petroleum diesel. However, with the optimization of each element technology and the development of integrated systems, not only biofuels, but also industrial materials, wastewater treatment, and greenhouse gases As application expands to various fields such as abatement, the timing of commercialization may be brought forward. Oil prices have recently fallen due to the influence of sail gas. Although there has been a significant drop, global warming is an urgent challenge for current and future generations. In particular, Korea, which does not have oil resources, We must always prepare for political environmental changes, high oil prices, and energy crises. In this paper, the need for eco-friendly biofuel for carbon dioxide conversion. In addition to research trends, domestic and international research trends, and economic prospects, the concept of microalgae and the element technologies of the biodiesel production process are briefly discussed introduced.

The Status of Biogas as Renewable Energy (신재생에너지로서 바이오가스 현황)

  • Lim, Young-Kwan;Lee, Joung-Min;Jung, Choong-Sub
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-130
    • /
    • 2012
  • In these days, there has been increased focus on global warming and the exhaustion of resources recently caused by the heavy consumption of fossil resources. In order to resolve these problems, biomass is increasingly gaining international attention as a renewable energy source. Biogas derived from various biomass is environmental friendly alternative fuel for power generation, heating and vehicle fuel. Large amounts of sewage sludge, food waste and manure are generated from human activity, but these organic wastes contain high levels of organic matter and thus they are potential substrates for producing methane of biogas. The biogas contains 60% of highly concentrated methane, which is expected to be used effectively as energy. In this paper, we investigate the status of biogas in Korea as an alternative energy.

The analysis of Change on Property and CO2 Emission Factor of Domestic Transportation Fuel from 2012 to 2015 (2012 ~ 2015년 국내 수송용 연료의 물성 및 CO2 배출계수의 변화추이 분석연구)

  • Kang, Hyungkyu;Doe, Jinwoo;Lim, Wanguy;Hwang, Inha;Ha, Jonghan;Na, Byungki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.855-863
    • /
    • 2016
  • Most greenhouse gases were arisen from the generation and use of energy, more than about 95 % of greenhouse gas from the traffic section was resulted by the transportation fuels. Also, when using the $CO_2$ emission factor suggested at IPCC G/L, there was the weakness which did not reflect the own property of fuel by country. And most industrialized countries have applied with the $CO_2$ emission factor of Tier 2 or Tier 3 to make the national greenhouse report to submit to UN according to the Kyoto Protocol. In this study, the transportation fuels using in domestic like unleaded gasoline, diesel, etc were analysed to identify the physical/chemical properties and these data were used to calculate the $CO_2$ emission factor of each fuels. And the study analysed the time series analysis to compare the property of fuels according to the change of time.

Potential of Agricultural Residues for Small Biomass Power Generation in Thailand

  • Panklib, Thakrit
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The demand for energy in Thailand has been continually increasing as the economic and social country grows. Approximately 60% of Thailand's primary energy is imported, mostly petroleum products. In 2008 Thailand's total energy consumption was 80,971 ktoe and the net price of energy imported was up to 1,161 billion Baht which is equivalent to 12.8% of GDP at the current price. The energy consumption or energy demand has been growing at an annual compounded growth rate of 6.42% and the peak electric power demand and electricity consumption was recorded at 22,568 MW and 148,264 GWh and grew at a rate of 7.0% and 7.5% per annum during the period from 1989 to 2008. The gross agriculture production in 2008 was recorded at 135.4 Mt which represents agriculture residue for energy at 65.73 Mt, which is equivalent to energy potential of about 561.64 PJ or 13,292 ktoe an increase in average of 5.59% and 5.44% per year respectively. The agricultural residues can converted to 15,600 GWh/year or 1,780 MW of power capacity. So, if government sector plan to install small biomass gasification for electricity generation 200 kW for Community. The residue agricultural is available for 8,900 plants nationwide. The small biomass power generation for electricity generation not only to reduce the energy imports, it also makes the job and income for people in rural areas as well. This paper's aim is to report the energy situation in Thailand and has studied 5 main agricultural products with high residue energy potential namely sugarcane, paddy, oil palm, cassava, and maize appropriate for small electricity production. These agricultural products can be found planted in many rural areas throughout Thailand. Finally, discuss the situation, methods and policies which the government uses to promote small private power producers supplying electricity into the grid.

Thermal Maturation and Diagenesis of the Gyeongsang Supergroup, Euiseong Area, SE Korea (의성지역 경상누층군의 열적진화와 속성작용)

  • Son Byeong-Kook;Cheong Tae-Jin;Oh lae-Ho;Kwak Young-Hoon
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.83-90
    • /
    • 1994
  • Thermal maturation and diagenesis of the Gyeongsang Supergroup in the Euiseong area are studied by means of organic geochemical techniques and illite crystallinity. Black mudrocks of the Singdong Group contain organic matter of $0.5{\~}2{\%}$ derived from higher plants, being compared to type Ⅲ. Thermal maturity of organic matter reached dry gas generation phase. Tmax by Rock Eval pyrolysis varies between $578^{\circ}C$ and $593^{\circ}C$ regardless of stratigraphic position and localities, and vitrinite reflectance is about 2.9 and $3{\~}4{\%}Ro$ in the Jinju and the Nagdong Formations, respectively. Vitrinite reflectance measurements indicate that the maturation is mainly due to burial and partly to be affected by post-depositional intrusions. Illite crystallinity values from the Nagdong, Hasandong, Jiniu Formations and part of the Iljig Formation are plotted around the boundary between diagenesis and anchizone, indicating dry gas generation stage. However, the values are not dependent on stratigraphic position. The values from the Iljig, Hupyeongdong, Geomgog, and Sagog Formations fall into the range of anchizone, probably resulted from the post-depositional intrusions which occur locally. Both organic geochemical and illite crystallinity data indicate thermal maturation stage of dry gas generation. Diagenesis of the Gyeongsang strata is mostly controlled by burial, and partly affected by post-depositional intrusions. Paleotemperature of the Sindong Group is estimated at around $200^{\circ}C$ on the basis of illite crystallinity.

  • PDF

Hydrogen Production by Gasification Technologies (가스화기술을 이용한 수소제조 기술)

  • 윤용승
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Gasification is the essential technology that can meet the interim hydrogen demand of large quantity before entering the hydrogen economy. Although the hydrogen production that is based upon the pure renewable energy like wind and solar power will eventually prevail, the interim mass production of hydrogen for the next ten to twenty years will come from the technologies that can demonstrate the economic feasibility in production cost with a high potential in minimizing CO$_2$ generation and in improving plant efficiency. Particularly, feedstock such as natural gas, coal, petroleum residual oil, wastes, and biomass appears to be utilized in Korea as hydrogen source, at least during the short and medium period of time, owing to the advantage in production cost. Because one of the main reasons behind the recent hydrogen issue is the reduction requirement of CO$_2$ that would be controlled according to the climate change protocol, hydrogen production technologies must be developed to yield the minimal CO$_2$ generation.

Studies on the Petroleum hydrocarbon-utilizing Microorganisms(Part 1) -On the Production of Protein from the Yeast-cell- (석유(탄화수소) 이용미생물에 관한 연구(제 1보) -효모세포에 의한 석유로부터 단백질 생성에 관하여-)

  • Lee, Ke-Ho;Shin, Hyun-Kyung
    • Applied Biological Chemistry
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1970
  • To study the productivity of single cell protein from the petroleum hydrocarbon utilizing yeasts, 242 soil samples, such as oil soaked soil of gas stations and garage, coal, farm soil, and sewage, from 135 places in Korea were collected. From these samples 468 yeast strains which utilize petroleum hydrocarbon as a sole organic carbon source were isolated and identified by observing the growth rates. For the identified strains optimum culture conditions were determined and analysis of cell components were performed. 1. 90.8% of petroleum hydrocarbon utilizing yeast strains were found from oil soaked soil and about 10% from coal, farm soil and sewage etc. 2. The yeast strain of the highest cell productivity was isolated from oil soaked soil and was identified as Candida curvata HY-69-19. 3. The optimum culture conditions for the selected yeast strain were found to be pH 5.0, $28^{\circ}C$ and affluent aerated state. 4. Candida curvata HY-69-19 was found to utilize favorably the heavy gas oil fractionated at above $268.9^{\circ}C$ as carbon source and urea as inorganic nitrogen source. 5. The growth curve of this strain on heavy gas oil medium showed that the yeast has a lag phase up to 18 hours and logarithmic growth phase between 24 to 42 hours. Generation time was found to be between 3.8 and 4.5 hours during the logarithmic growth phase. 6. About 300 mg dried cells per heavy gas oil was harvested under the culture conditions of adjusted pH to 5.0 at time intervals of 6 hours for 54 hours and heavy gas oil urea for shaking culture medium. 7. Chemical composition of the yeast cell was found to be 40.25%, 14.81%, 24.32% and 10.63% for crude protein, crude lipid, carbohydrate and ashes, respectively.

  • PDF