• Title/Summary/Keyword: petrochemical study

Search Result 357, Processing Time 0.033 seconds

A Study on Mathematical Modeling of Forcing Function for the Piping Vibration of Petrochemical Plant Design (플랜트 설계 시 배관진동을 유발하는 가진 함수의 수학적 모델링)

  • 민선규;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.591-595
    • /
    • 1997
  • In analysis of piping vibration of petrochemical plant, the forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used for the system with rotary equipments. Mechanical driving frequencies, wave functions, and response spectrum are used for reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, for the spray injection case inside the pipe, forcing function was modeled, in which two different fluids are distributed uniformly. To confirm the results, the scheme used for the forcing function was applied for real piping system. The vibration mode of the real system was consistent with the 4th mode obtained by simulation using the forcing function formulated in this study.

  • PDF

Trend of the Changes in the Level of Blood Lead, Urinary Arsenic and Urinary Cadmium of children in Ulsan ; 3-year Follow-up Study (울산지역 어린이들의 혈중 연, 요중 비소 및 카드뮴 농도 변화추이 - 3년 추적조사)

  • Yoo, Cheol-In;Lee, Ji-Ho;Lee, Hun;Kim, Yang-Ho;Lee, Choong-Ryeol
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.2
    • /
    • pp.166-174
    • /
    • 2001
  • Objectives : To obtain basic data on blood lead level and urinary level of arsenic and cadmium of children living near a petrochemical estate and a suburban area in Ulsan, Korea and to observe the trend of the changes. In the level of these metals in these children. Methods : The study subjects comprised 626 children living near a petrochemical estate and 299 children living in a suburban area of Ulsan. We analyzed the level of lead, arsenic and cadmium using atomic absorption spectrometer. Results : The mean levels of blood lead in children living near the petrochemical estate were $5.25{\mu}g/dl,\;5.24{\mu}g/dl,\;and\;7.24{\mu}g/dl$, and in the years 1997, 1999, and 2000, respectively, whereas those of children living in the suburban area were $3.81{\mu}g/dl,\;4.75{\mu}g/dl,\;and\;7.19{\mu}g/dl$ respectively. The mean levels of urinary arsenic in children living near the petrochemical estate were $4.57{\mu}g/g$ creatinine, $4.78{\mu}g/g$ creatinine, and $6.02{\mu}g/g$ creatinine in the year 1997, 1999, and 2000 respectively, whereas those of children living in suburban area were $2.35{\mu}g/g$ creatinine, $4.75{\mu}g/g$ creatinine, and $7.07{\mu}g/g$ creatinine, respectively. The mean levels of urinary cadmium in children living near the petrochemical estate were $1.15{\mu}g/g$ creatinine, $1.05{\mu}g/g$ creatinine, and $1.71{\mu}g/g$ creatinine in the year 1997, 1999, and 2000, respectively, whereas those of the children living in the suburban area were $0.74{\mu}g/g$ creatinine, $1.29{\mu}g/g$ creatinine, and $1.48{\mu}g/g$ creatinine, respectively. There were increasing trends in the level of blood lead, urinary arsenic and cadmium of children in Ulsan, and the differences in the level of these metals were disappearing between the children living in other areas year by year. Conclusions : These results suggest that the amount of exposure to lead, arsenic, and cadmium is increasing from year to year, and there is a need for periodic biological and atmospheric monitoring of these metals in Ulsan.

  • PDF

A Study on Static and Dynamic Design Criteria of Piping System in Petrochemical Plant Design (석유화학 플랜트 설계 시 배관계의 정적, 동적 설계기준에 대한 연구)

  • 민선규;최명진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.275-279
    • /
    • 2001
  • There are two kinds of the design criteria of piping system in petrochemical plant design. The first is on static state evaluation by thermal growth and the other is on dynamic evaluation by piping vibration. In the static design evaluation, the ASME B31.3 code defines 7000 cycles of fatigue life in operating the piping system with design condition. However, the dynamic design evaluation in comparative with small displacements of high frequencies to static condition has not established clearly the method, yet. So, this study purposes to present the trial of a proposal of dynamic design criterion on the basis of static design method.

  • PDF

A Simulation of Forcing Function for the Piping Vibration in Petrochemical Plants (석유화학 플랜트에서 배관 가진 함수의 시뮬레이션에 관한 연구)

  • 민선규;최명진;김경훈
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • For the simulation of piping vibrations in petrochemical plants, forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used to simulate rotary equipment. Mechanical driving frequencies, wave functions, and response spectrum are used to simulate reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, the general suggestions for forcing functions were reviewed and proposed the forcing function to simulate the spray injection system inside the pipe in which two different fluids are distributed uniformly. To confirm the results, the scheme was applied for a real piping system. The vibration mode of the real system was consistent with the 4th mode (26.725 Hz) obtained by simulation using the forcing function presented in this study.

  • PDF

Petrochemical Study on the Micrographic Granite in the Wando Area (완도지역(莞島地域)에 분포하는 미문상화강암(微文象花崗岩)에 대한 암석화학적(岩石化學的) 연구(硏究))

  • Shin, In-Hyun;Nam, Ki-Sang;Kim, Hee-Nam;Park, Young-Seog;Ahn, Kun-Sang
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Petrochemical study on the micrographic granite distributed in the Wando area, the southernmost part of the Yeongdong-Kwangju depression is performed to investigate the petrogenesis and differentiation processes of the granitic magma. Polarized light microscopy for modal analyses, electron probe microanalyses of feldspars and biotite, inductively coupled plasma analyses for major and trace element contents were adopted in the study. The lithology of the study area consists of Precambrian metasediments, Mesozoic volcanic and sedimentary rocks, and micrographic granite which intrude into the former. The micrographic granite in the Wando area are distributed in the shape of a cauldron. Modal and nonnative mineral analyses of the micrographic granite fall in the area of granite and granodiorite. The chemical composition indicates that the micrographic granite is I-type and magnetite series. The micrographic granite is characterized by more than 90% of micrographic texture in volume percent. Feldspars in the micrographic granite is alkali feldspars (Or, 45~93) and plagioclases (albite to oligoclase). The biotite has a intermediate composition between phlogopite and annite solid solution. The results of the petrochemical studies indicate that the granitic magma of calc-alkaline source materials reactivated in a compressional environment at the continental margin, and then was differentiated by fractional crystallization. The micrographic granite intruded into a shallow level of the crust (5~7 km) in the late Cretaceous.

  • PDF

Analysis Characteristic of Non-point source in Petrochemical (석유화학업종에서의 비산배출원 배출 특성 분석)

  • Chiwan, Ku;Seunghyo, An;Byungchol, Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.45-51
    • /
    • 2022
  • Technologies for collecting and treating pollutants from point sources are steadily being developed, but Non-point sources, it is difficult to develop emission treatment technologies and effective emission coefficients. However, since non-point sources make up about 60% of domestic emissions, and first of all, the method of calculating emissions should be reasonable, and the workplace should develop emission reduction technologies based on this. This study suggest the effectiveness and improvement of the emission coefficient currently used for the petrochemical industry with high emissions. The emission characteristics of non-point sources emission were confirmed by analyzing the LDAR (Leak Detection And Repair) data of OO company located in Yeosu, Jeollanam-do over the past five years. As a result, there was no difference in discharge characteristics according to fluid phase, but it was confirmed that there was a difference in the size of the device and the characteristics of each manufacturer. In addition, it was confirmed that the emission coefficient applied in the petrochemical industry was larger than that of the refining industry, and improvement measures were suggested. Through these studies, it is expected that emission coefficients specialized in the petrochemical industry can be applied and that the workplace itself will contribute to the development of technologies that can drastically reduce them.

The Impact of Redundancy and Teamwork on Resilience Engineering Factors by Fuzzy Mathematical Programming and Analysis of Variance in a Large Petrochemical Plant

  • Azadeh, Ali;Salehi, Vahid;Mirzayi, Mahsa
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.307-316
    • /
    • 2016
  • Background: Resilience engineering (RE) is a new paradigm that can control incidents and reduce their consequences. Integrated RE includes four new factors-self-organization, teamwork, redundancy, and fault-tolerance-in addition to conventional RE factors. This study aimed to evaluate the impacts of these four factors on RE and determine the most efficient factor in an uncertain environment. Methods: The required data were collected through a questionnaire in a petrochemical plant in June 2013. The questionnaire was completed by 115 respondents including 37 managers and 78 operators. Fuzzy data envelopment analysis was used in different ${\alpha}$-cuts in order to calculate the impact of each factor. Analysis of variance was employed to compare the efficiency score means of the four abovementioned factors. Results: The results showed that as ${\alpha}$ approached 0 and the system became fuzzier (${\alpha}=0.3$ and ${\alpha}=0.1$), teamwork played a significant role and had the highest impact on the resilient system. In contrast, as ${\alpha}$ approached 1 and the fuzzy system went toward a certain mode (${\alpha}=0.9$ and ${\alpha}=1$), redundancy had a vital role in the selected resilient system. Therefore, redundancy and teamwork were the most efficient factors. Conclusion: The approach developed in this study could be used for identifying the most important factors in such environments. The results of this study may help managers to have better understanding of weak and strong points in such industries.

A Study on plans for improving localization of process pumps for petrochemical plants (석유화학 플랜트용 프로세스 펌프의 국산화율 제고 방안에 관한 연구)

  • Cho, Won-Bae;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.5 no.3
    • /
    • pp.50-58
    • /
    • 2009
  • In this paper, the present condition for localization of process pumps and the enhancement method of the localization ratio of process pumps for refinery and chemical plant market were studied. The market of plant industry in the world has grown rapidly since 2000. However, the profit of domestic plant EPC compaies cound not have been increased as much as the market scale because they procured most of equipment from overseas. To make remarkable profit of plant EPC companies in the petrochemical industry, localization of equipments is required. Suitable equipment for localization is process pump applied API 610 standard. An purchased amount of pumps from overseas by domestic plant EPC companies in the last two years were 230 billion won. If process pumps are localized then an profit of plant EPC project will increase.

  • PDF