• Title/Summary/Keyword: petaloid bottom

Search Result 3, Processing Time 0.015 seconds

A Study on the Bottom Design of Petaloid Carbonated PET Bottle to Prevent Bottom Crack (탄산음료용 PET병의 바닥면 크랙방지를 위한 Petaloid 디자인)

  • Shin H. C.;Lyu M. Y.;Kim Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.154-157
    • /
    • 2001
  • Through this study we investigated the causes of bottom crack. We then redesigned petaloid bottom to prevent bottom crack. We examined the material property variations according to the stretch ratio of PET and analyzed stretches of bottom in blowing processes. We also performed crack test to observe a crack phenomena. The effective stress and maximum principal stress were examined by computer simulation. We concluded that the bottom crack occurs because of not only insufficient strength of material due to the insufficient stretch of PET but also coarse design of petaloid shape. The highest maximum principal stress occurred at valley in petaloid bottom of bottle and this strongly affected the crack in bottom. We redesigned petaloid shape to minimize maximum principal stress, and this result in increasing the crack resistance.

  • PDF

Comparison of Petaloid Bottom Design for Carbonated Soft Drink PET Bottle through Computer Simulation

  • Dong-Hae Choi;Kyeong Hoon Cho;Kyoung Woo Nam;Woo Min Kim;Baek Rim Yeon;Min-Young Lyu
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.205-214
    • /
    • 2022
  • Research on reducing the thickness of polyethylene terephthalate (PET) bottles is necessary to reduce the amount of plastic used. However, as decreasing a PET bottle's thickness weakens it, a robust bottle design is required. Therefore, in this study, we numerically analyzed various bottom designs of a carbonated soft drink PET bottle with 245 and 500 ml capacities and complicated petaloid shapes. Deformation, equivalent stress, maximum principal stress, and its direction according to each design were analyzed to study the strength of the bottle. The results serve as a reference to design robust petaloid PET bottle bottoms with a reduced thickness for carbonated soft drinks.

Investigation of Bottom Cracks in the Carbonated Poly(ethylene terephthalate) Bottle

  • Pae, You-Lee;Nah, Chang-Woon;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.354-362
    • /
    • 2003
  • The use of a petaloid design for the bottom of carbonated poly(ethylene terephthalate)(PET) bottles is widely spread. This study investigated the causes of bottom cracks. The tensile yield stress variations of PET according to the crystallinity and stretch ratio were examined, then the stretch ratio and strength in the bottom area of a blown bottle were analyzed. A crack test was also performed to observe the cracking phenomena. The distribution of the effective stress and maximum principal stress were both examined using computer simulation to seek the influence of the bottom design on crack. It was concluded that the bottom cracks occurred because of inadequate material strength due to the insufficient stretching of PET, plus the coarse design of a petaloid bottom. The stretch ratio at the bottom during bottle blowing should be higher than the strain hardening point of PET to produce enhanced mechanical strength. The cracks in the bottom of the PET bottles occurred through crazing below the yield stress. The maximum principal stress was higher in the valleys of the petaloid bottom than in the rest bottom area, and the maximum principal stress had a strong effect on the cracks.