• Title/Summary/Keyword: pesticide stress

Search Result 24, Processing Time 0.026 seconds

Silicon Application on Standard Chrysanthemum Alleviates Damages Induced by Disease and Aphid Insect

  • Jeong, Kyeong-Jin;Chon, Young-Shin;Ha, Su-Hyeon;Kang, Hyun-Kyung;Yun, Jae-Gill
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • To elucidate the role of silicon in biotic stress such as pests and diseases, standard chrysanthemum was grown in pots filled with soil without application of pesticide and fungicide. Si treatment was largely composed of three groups: $K_2SiO_3$ (50, 100, and $200mg{\cdot}L^{-1}$), three brands of silicate fertilizer (SiF1, SiF2, and SiF3) and tap water as a control. Si sources were constantly drenched into pots for 14 weeks. Application high concentration $K_2SiO_3$ ($200mg{\cdot}L^{-1}$) and three commercial Si fertilizers for 14 weeks improved growth parameters such as plant height and the number of leaves. In the assessment of disease after 4 weeks of Si treatment, percentage of infected leaves was not significantly different from that of control. After 14 weeks of Si treatment, however, the infected leaves were significantly reduced with a 20-50% decrease in high concentration ($200mg{\cdot}L^{-1}$) of potassium silicate and all commercial silicate fertilizers. Colonies of aphid insect (Macrosiphoniellas anborni) were also reduced in Si-treated chrysanthemum, showing 40-57% lower than those of control plants. Accumulation of silicon (approximately $5.4-7.1mg{\cdot}g^{-1}$ dry weight) in shoots of the plants was higher in Si-supplemented chrysanthemum compared to control plants ($3.3mg{\cdot}g^{-1}$ dry weight). These results indicate that using potassium silicate or silicate fertilizer may be a useful for management of disease and aphid insect in soil-cultivated chrysanthemum.

Effect of Parathion on Hematological Parameters in the Serum of a Male Bagrid Catfish (Pseudobagrus fulvidraco )

  • Cho Kyu-Seok;Park Jong-Ho;Kang Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.109-114
    • /
    • 2004
  • To evaluate the impact of parathion on aquatic organisms, a freshwater bagrid catfish (Pseudobagrus fulvidraco) was exposed to sublethal concentrations $(63,\;95,\;190\;and\;380\;{\mu}g/L)$ of parathion, organophosphorus pesticide for 30 days. Glucose level in the serum of the bagrid catfish was significantly increased than that of control groups in the $190\;{\mu}g/L$ concentration at 30 days and in the $380\;{\mu}g/L$ concentration after 10 days. Bilirubin level was significantly increased in the $190\;{\mu}g/L$ concentration at the end of the experiment. After 10 days, a significant differences of lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) activity increased in the ${\geq}190\;{\mu}g/L$ and $380\;{\mu}g/L$ groups. Though cholesterol concentration was stable, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in serum were significantly reduced in the $190\;{\mu}g/L$ at 10 days and in the $380\;{\mu}g/L$ concentration at the end of the experiment. In conclusion, if P. fulvidraco was chronically exposed to ${\geq}190\;{\mu}g/L$ concentration of parathion, the hematological changes may be induced due to the stress response.

Effect of Water Activity and Temperature on Growth, Germination, Sporulation, and Utilization of Carbon Source of Penicillium oxalicum (PENOX) as a Biocontrol Agent(BCA) for control of Clover(Trifolium repens L.) (토끼풀(Trifolium repens L.) 방제용 생물제제 Penicillium oxalicum (PENOX)의 발아, 생장, 포자생성 및 탄소원이용에 미치는 수분활성 및 온도의 영향)

  • Lee, Hyang-Burm;Kim, Chang-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.68-74
    • /
    • 2000
  • Penicillium oxalicum (PENOX) has shown the potential as a biocontrol agent(5CA) for control of a weed, clover(Trifolium repens L.) in grass plots. The bioherbicidal activity may be due to germinative and growth capacities and substrate availability of the agent over a range of environmental factors. The influences of different water activities($0.94{\sim}0.995\;a_w$) and temperatures($18{\sim}30^{\circ}C$) on mycelial growth, conidial germination, sporulation oil 2% MEA(malt extract agar) adjusted to different water activities with glycerol, and carbon source utilization using BIOLOG GN MicroPlate were determined in vitro. Decreases in $a_w$ on MEA caused a reduction in mycelial growth and conidial germination depending on temperature. The mycelial growth of PENOX was greatest at $30^{\circ}C/0.995\;a_w$. At some lowered water activity($0.97\;a_w$), the growth was similar between 25 and $30^{\circ}C$, and considerably decreased at lowered temperature($20^{\circ}C$). The germination rate was also greatest at $30^{\circ}C/0.995\;a_w$. Lag phase times for PENOX at $18^{\circ}C$ on MEA were >6hrs at tile whole $a_w$ level tested, and at 18 and $25^{\circ}C$ they were >18hrs and >12hrs at $0.94\;a_w$, respectively. However, its sporulation was some better at $0.97\;a_w$ than $0.995\;a_w$ or $0.94\;a_w$, and better at $20^{\circ}C$ than $30^{\circ}C$. In contrast, the number of carbon sources(niche size) utilized by PENOX varied with $a_w$ and temperature. Under some water stress condition($0.95\;a_w$), the agent utilized smaller number of carbon sources than $0.995\;a_w$ depending on temperature. The niche size at 0.995 and $0.95\;a_w$ were highest at $25^{\circ}C$, and showed 86 and 65, respectively. At $30^{\circ}C$, the niche size at 0.995 and $0.95\;a_w$ showed 84 and 50, respectively. There was no carbon source utilized by PENOX at $0.90\;a_w$ regardless of temperature. These information of tile fungal ecophysiology will be useful for the effective development of BCA.

  • PDF

Physiological Response of Rice Plant under Environmental Stress -I. Nutritional disorder under soil reduction in paddy fields (환경장애(環境障碍)에 대(對)한 수도(水稻)의 생리반응(生理反應) -I. 농가포장(農家圃場)의 토양환원(土壤還元)에 의(依)한 영향장해(營養障害))

  • Park, Hoon;Mok, Sung Kyun;Kwon, Hang Gwang;Park, Chon Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.115-127
    • /
    • 1973
  • Leaf discoloration of IR667 lines (tropical) and leading locals (temperate) in fields was classified according to the probable causes and nutritional disorder due to soil reduction in 1972 was investigated. 1. The causes of leaf discoloration in IR667 were low air temperature, soil reduction, seed born, insect bite, nitrogen depression, overdose pesticide, strong wind, early senescence and unknown one. 2. Leaf discoloration due to soil reduction which has been called Sageumbyeong by famers, was caused by the heavy application of $Ca(OH)_2$, compost and poor drainage followed by Zn and K deficiency and Fe toxicity. 3. About 30 days after transplanting deficiency concentration of K and Zn in leaf blade appears to be less than 2.0% and 20ppm respectively, and greater than 200ppm, 500ppm, and 1.0% respectively for toxicity or excess of Fe, Mn and Ca. and in the shoot 2.4% for K, 30ppm for Zn and 800ppm for Fe. The value of K/Ca should be greaterthan 2.0 for health. 4. When plants were damaged by soil reduction the contents of N, P, Ca, Mg, Fe, Mn, Na in shoot were increased and those of K, Zn, Si were decreased. 5. IR667 lines show in shoot higher content of N, P, Ca, Mg, Si, Na, and lower content K, Zn, Fe, Mn and lower root activity than local leading varietles in either healthy or disieased case, indicating IR667 lines are likely more suseptible to soil reduction damage. 6. Normal soil was less than 6.5 of pH and greater than -50 mv of Eh, but pH of problem soil was ranged from 6.7 to 7.4 and Eh from -100 to -190. 7. The root activity (${\alpha}$-naphthylamine oxidation) decreased at early stage of soil redudtion damage, then increased with severity and at the end it decreased again, but IR667 lines showed always lower root activity than local ones.

  • PDF