• 제목/요약/키워드: perturbation fields

검색결과 47건 처리시간 0.022초

An analytical solution for equations and the dynamical behavior of the orthotropic elastic material

  • Ramady, Ahmed;Atia, H.A.;Mahmoud, S.R.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.315-321
    • /
    • 2021
  • In this article, an analytical solution of the dynamical behavior in an orthotropic non-homogeneity elastic material using for elastodynamics equations is investigated. The effects of the magnetic field, the initial stress, and the non-homogeneity on the radial displacement and the corresponding stresses in an orthotropic material are investigated. The analytical solution for the elastodynamic equations has solved regarding displacements. The variation of the stresses, the displacement, and the perturbation magnetic field have shown graphically. Comparisons are made with the previous results in the absence of the magnetic field, the initial stress, and the non-homogeneity. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity.

Thermal radiation and some physical combined effects on an asymmetric peristaltically vertical channel of nanofluid flow

  • Amira S. Awaad;Zakaria M. Gharsseldien
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.579-591
    • /
    • 2024
  • This study explained the effects of radiation, magnetic field, and nanoparticle shape on the peristaltic flow of an Upper-Convected Maxwell nanofluid through a porous medium in an asymmetric channel for a better understanding of cooling and heating mechanisms in the presence of magnetic fields. These phenomena are modeled mathematically as a system of non-linear differential equations, that are solved under long-wavelength approximation and low Reynolds number conditions using the perturbation method. The results for nanofluid and temperature described the behavior of the pumping characteristics during their interaction with (the vertical position, thermal radiation, the shape of the nanoparticle, and the magnetic field) analytically and explained graphically. Also, the combined effects of thermal radiation parameters and some physical parameters on pressure rise, pressure gradient, velocity, and heat distribution are pointed out. Qualitatively, a reverse velocity appears with combined high radiation and Grashof number or combined high radiation and low volume flow rate. At high radiation, the spherical nanoparticle shape has the greatest effect on heat distribution.

Dantzig 위험을 사용한 포트폴리오 최적화 선형계획법 모형 (Linear programming models using a Dantzig type risk for portfolio optimization)

  • 안다영;박세영
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.229-250
    • /
    • 2022
  • 포트폴리오 최적화 이론의 초석인 Markowitz의 평균-분산 포트폴리오 모형 (1952)이 발표된 이후로 많은 분야에서 포트폴리오 최적화에 대한 다양한 연구가 진행되었다. 기존의 평균-분산 포트폴리오 모형은 주로 목적함수나 제약식에 비선형 볼록 형태를 포함한다. 이를 Dantzig의 선형계획법을 적용하여 선형으로 변환시켜 알고리즘 계산 시간을 효율적으로 감소시켰다. 또한 시계열 데이터 특성을 반영하여 시간에 따른 가중치를 고려하는 가우시안 커널 가중치 공분산을 제안하였다. 여기에 일정 부분은 벤치마크에 투자하고 나머지는 포트폴리오 최적화 모형으로 제안된 자산들에 투자하는 퍼터베이션 방법을 적용하여 평균 수익률과 위험도를 목적에 맞게 조절하도록 하였다. 또한, 본 논문에서는 안정적이면서도 적은 자산을 보유하게 포트폴리오를 구성하여 관리비용(management costs)과 거래비용(transaction costs)를 낮출 수 있는 Dantzig-type 퍼터베이션 포트폴리오 모형을 제안하였다. 제안된 모형의 성능은 5개의 실제 데이터 세트로 벤치마크 포트폴리오와 비교 분석하여 평가하였다. 최종적으로 제안한 최적화 모형은 벤치마크보다 높은 기대수익률이나 낮은 위험도를 갖는 포트폴리오를 구성하여 퍼터베이션 목적을 만족하며, 투자한 자산의 수와 시간에 따른 자산 구성 변화를 일정 수준 이하로 조절하는 희소하며 안정적인 결과를 얻었다.

A GRADIENT-T SZE

  • HATTORI MAKOTO;OKABE NOBUHIRO
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.543-546
    • /
    • 2004
  • The inverse Compton scattering of the cosmic microwave background (CMB) radiation with electrons in the intracluster medium which has a temperature gradient, was examined by the third-order perturbation theory of the Compton scattering. A new type of the spectrum distortion of the CMB was found and named as gradient T Sunyaev-Zel'dovich effect (gradT SZE). The spectrum has an universal shape. There is a zero distortion point, the cross over frequency, at 326GHz. When the hotter region locates closer to an observer, the intensity becomes brighter than the CMB in the frequency region lower than the cross over frequency and fainter than the CMB in the frequency region higher than the cross over frequency. When the cooler region locates closer to an observer, the distorted part of the spectrum has an opposite sign to the above case. The amplitude of the spectrum distortion does not de-pend on the electron density and depends on the heat conductivity and the total temperature variation along a line of sight. Therefore, the gradT SZE provides an unique opportunity to measure thermally nonequilibrium electron momentum distribution function in the ICM and combined with the X-ray measurements of the electron temperature distribution provides an opportunity of direct measurement of the heat conductivity in the ICM.

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.

Crystallographic Effects of Larger Indium Ion Substitution in NiFe2-xInxO4 (x = 0, 0.2, 0.5, and 1.0) System

  • Yoon, Sung-Hyun;Yoon, Chang-Sun;Kim, Byung-Ho
    • Journal of Magnetics
    • /
    • 제10권1호
    • /
    • pp.23-27
    • /
    • 2005
  • The crystallographic and magnetic properties of a series of substitutions in nickel ferrite where the Fe3+ is replaced with In3+ have been investigated using X-ray diffraction (XRD) and Mössbauer spectroscopy. Information on the exact crystalline structure, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles by a Rietveld method. All the crystal structures were found to be cubic with the space group Fd/3m. The lattice constants increased with In3+ concentration. The expansion of the tetrahedron was outstanding, indicative of the tetrahedral (A) site preference of larger indium ion. The Mossbauer spectra showed two sets of sextuplet originating from ferric ions occupying the tetrahedral sites and the octahedral (B) sites under the Neel temperature TN. Regardless of the composition x, the electric quadrupole splitting was zero within the experimental error. At x = 0.2, the magnetic hyperfine fields increased slightly, which meant that the nonmagnetic indium ions occupied preferentially the A-site. At the same time, the intensity of the B-site sub-spectra decreased markedly at the elevated temperature, indicating that the occupation of the A site by indium induced a considerable perturbation on the B site.

Stochastic finite element based seismic analysis of framed structures with open-storey

  • Manjuprasad, M.;Gopalakrishnan, S.;Rao, K. Balaji
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.381-394
    • /
    • 2003
  • While constructing multistorey buildings with reinforced concrete framed structures it is a common practice to provide parking space for vehicles at the ground floor level. This floor will generally consist of open frames without any infilled walls and is called an open-storey. From a post disaster damage survey carried out, it was noticed that during the January 26, 2001 Bhuj (Gujarat, India) earthquake, a large number of reinforced concrete framed buildings with open-storey at ground floor level, suffered extensive damage and in some cases catastrophic collapse. This has brought into sharp focus the need to carry out systematic studies on the seismic vulnerability of such buildings. Determination of vulnerability requires realistic structural response estimations taking into account the stochasticity in the loading and the system parameters. The stochastic finite element method can be effectively used to model the random fields while carrying out such studies. This paper presents the details of stochastic finite element analysis of a five-storey three-bay reinforced concrete framed structure with open-storey subjected to standard seismic excitation. In the present study, only the stochasticity in the system parameters is considered. The stochastic finite element method used for carrying out the analysis is based on perturbation technique. Each random field representing the stochastic geometry/material property is discretised into correlated random variables using spatial averaging technique. The uncertainties in geometry and material properties are modelled using the first two moments of the corresponding parameters. In evaluating the stochastic response, the cross-sectional area and Young' modulus are considered as independent random fields. To study the influence of correlation length of random fields, different correlation lengths are considered for random field discretisation. The spatial expectations and covariances for displacement response at any time instant are obtained as the output. The effect of open-storey is modelled by suitably considering the stiffness of infilled walls in the upper storey using cross bracing. In order to account for changes in soil conditions during strong motion earthquakes, both fixed and hinged supports are considered. The results of the stochastic finite element based seismic analysis of reinforced concrete framed structures reported in this paper demonstrate the importance of considering the effect of open-storey with appropriate support conditions to estimate the realistic response of buildings subjected to earthquakes.

선형 판별 분석 및 k-means 알고리즘을 이용한 적대적 공격 유형 분류 방안 (An Adversarial Attack Type Classification Method Using Linear Discriminant Analysis and k-means Algorithm)

  • 최석환;김형건;최윤호
    • 정보보호학회논문지
    • /
    • 제31권6호
    • /
    • pp.1215-1225
    • /
    • 2021
  • 인공지능 기술은 우수한 성능을 기반으로 다양한 분야에 적용되고 있지만 입력 데이터에 인간이 감지할 수 없는 적대적 섭동을 추가하여 인공지능 모델의 오작동을 유도하는 적대적 예제에 취약하다. 현재까지 적대적 예제에 대응하기 위한 방법은 세 가지 범주로 분류할 수 있다. (1) 모델 재학습 방법; (2) 입력 변환 방법; (3) 적대적 예제 탐지 방법. 이러한 적대적 예제에 대응하기 위한 방법은 끊임없이 등장하고 있지만 각 적대적 공격 유형을 분류하는 연구는 미비한 실정이다. 따라서, 본 논문에서는 차원 축소와 군집화 알고리즘을 활용한 적대적 공격 유형 분류 방법을 제안한다. 구체적으로, 제안하는 방법은 적대적 예시로부터 적대적 섭동을 추출하고 선형 판별 분석(LDA)를 통해 적대적 섭동의 차원을 축소한 후에 k-means 알고리즘으로 적대적 공격 유형 분류를 수행한다. MNIST 데이터셋과 CIFAR-10 데이터셋을 대상으로 한 실험을 통해, 제안하는 기법은 5개의 적대적 공격(FGSM, BIM, PGD, DeepFool, C&W)을 효율적으로 분류할 수 있으며, 적대적 예제에 대한 정상 입력을 알 수 없는 제한적인 상황에서도 우수한 분류 성능을 나타내는 것을 확인하였다.

Evolution and scaling of a simulated downburst-producing thunderstorm outflow

  • Oreskovic, Christopher;Savory, Eric;Porto, Juliette;Orf, Leigh G.
    • Wind and Structures
    • /
    • 제26권3호
    • /
    • pp.147-161
    • /
    • 2018
  • For wind engineering applications downbursts are, presently, almost exclusively modeled, both experimentally and numerically, as transient impinging momentum jets (IJ), even though that model contains none of the physics of real events. As a result, there is no connection between the IJ-simulated downburst wind fields and the conditions of formation of the event. The cooling source (CS) model offers a significant improvement since it incorporates the negative buoyancy forcing and baroclinic vorticity generation that occurs in nature. The present work aims at using large-scale numerical simulation of downburst-producing thunderstorms to develop a simpler model that replicates some of the key physics whilst maintaining the relative simplicity of the IJ model. Using an example of such a simulated event it is found that the non-linear scaling of the velocity field, based on the peak potential temperature (and, hence, density) perturbation forcing immediately beneath the storm cloud, produces results for the radial location of the peak radial outflow wind speeds near the ground, the magnitude of that peak and the time at which the peak occurs that match well (typically within 5%) of those produced from a simple axi-symmetric constant-density dense source simulation. The evolution of the downdraft column within the simulated thunderstorm is significantly more complex than in any axi-symmetric model, with a sequence of downdraft winds that strengthen then weaken within a much longer period (>17 minutes) of consistently downwards winds over almost all heights up to at least 2,500 m.