• 제목/요약/키워드: personalized spam filter

검색결과 5건 처리시간 0.018초

Personalized Anti-spam Filter Considering Users' Different Preferences

  • Kim, Jong-Wan
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.841-848
    • /
    • 2010
  • Conventional filters using email header and body information equally judge whether an incoming email is spam or not. However this is unrealistic in everyday life because each person has different criteria to judge what is spam or not. To resolve this problem, we consider user preference information as well as email category information derived from the email content. In this paper, we have developed a personalized anti-spam system using ontologies constructed from rules derived in a data mining process. The reason why traditional content-based filters are not applicable to the proposed experimental situation is described. In also, several experiments constructing classifiers to decide email category and comparing classification rule learners are performed. Especially, an ID3 decision tree algorithm improved the overall accuracy around 17% compared to a conventional SVM text miner on the decision of email category. Some discussions about the axioms generated from the experimental dataset are given too.

Mobile Junk Message Filter Reflecting User Preference

  • Lee, Kyoung-Ju;Choi, Deok-Jai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권11호
    • /
    • pp.2849-2865
    • /
    • 2012
  • In order to block mobile junk messages automatically, many studies on spam filters have applied machine learning algorithms. Most previous research focused only on the accuracy rate of spam filters from the view point of the algorithm used, not on individual user's preferences. In terms of individual taste, the spam filters implemented on a mobile device have the advantage over spam filters on a network node, because it deals with only incoming messages on the users' phone and generates no additional traffic during the filtering process. However, a spam filter on a mobile phone has to consider the consumption of resources, because energy, memory and computing ability are limited. Moreover, as time passes an increasing number of feature words are likely to exhaust mobile resources. In this paper we propose a spam filter model distributed between a users' computer and smart phone. We expect the model to follow personal decision boundaries and use the uniform resources of smart phones. An authorized user's computer takes on the more complex and time consuming jobs, such as feature selection and training, while the smart phone performs only the minimum amount of work for filtering and utilizes the results of the information calculated on the desktop. Our experiments show that the accuracy of our method is more than 95% with Na$\ddot{i}$ve Bayes and Support Vector Machine, and our model that uses uniform memory does not affect other applications that run on the smart phone.

카이제곱 통계량을 이용한 개선된 베이지안 스팸메일 필터 (An Improved Bayesian Spam Mail Filter based on Ch-square Statistics)

  • 김진상;최상열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.403-414
    • /
    • 2005
  • 현재까지 개발된 스팸 메일 필터는 주로 베이지안 학습을 이용한 문서분류에 바탕을 두고 있지만, 정확률 향상의 한계라는 문제점과 더불어 일반 메일을 스팸 메일로 오분류하는 치명적인 오류를 극복하지 못하는 문제점을 안고 있다. 본 논문은 카이제곱 통계량을 바탕으로 베이지안 필터의 false positive 에러를 해결하고. 더불어 정확률과 재현율 향상을 동시에기할 수 있는 스팸 메일 필터링 방법을 기술한다. 또한 본 논문에서 사용된 방법은 사용자의 배경 지식을 기계학습 단계에서 파라미터로 반영하여 시스템의 유연성을 높이고 나아가 개인화된 시스템으로 확장시킬 수 있다는 장점도 있다.

  • PDF

사용자 맞춤형 스팸 문자 필터링 시스템 (Personalized Mobile Junk Message Filtering System)

  • 이승재;최덕재
    • 한국콘텐츠학회논문지
    • /
    • 제11권12호
    • /
    • pp.122-135
    • /
    • 2011
  • 스팸 문자 메시지는 모바일 이용자에게 불쾌감을 줄 뿐만 아니라 불필요한 사회비용을 유발하는 유해 요소이다. 특히 스마트워크 시스템에서 핵심 단말인 스마트폰으로 유입되는 스팸 문자는 업무능률 향상이라는 스마트워크의 취지를 무색하게 만들 수 있어 이에 대한 연구가 필요하다. 본 논문에서는 스팸 자동분류기로 스팸 메시지를 차단함에 있어서, 오분류 결과를 학습군에 재반영하여 연산량을 줄이고 인식 성능을 개선할 수 있는 방법을 제안하였다. 스팸 분류기는 스마트폰에서 독립적으로 동작하고, 사용자의 수신 메시지만으로 학습하므로 사용자의 분류 판단 성향을 반영할 수 있다. 많은 컴퓨팅 자원을 소비해야 하는 전처리, 특징 선정, 훈련 과정은 사용자의 인증 컴퓨터가 담당하고 필터링 과정만을 스마트폰에서 처리한다. 실험 결과 95%이상의 양호한 결과를 보였고 스팸 분류기는 스마트폰의 일정 자원만을 점유하면서 동작하였다.

개인화된 분류를 위한 웹 메일 필터링 에이전트 (Design and Implementation of Web Mail Filtering Agent for Personalized Classification)

  • 정옥란;조동섭
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.853-862
    • /
    • 2003
  • 인터넷의 발달로 인하여 웹을 통한 문서 송수신이 많아지면서 이메일의 사용자도 기하급수적으로 늘어나고 있다. 또한 일반 사용자나 전자상거래에서 오가는 메일의 양도 갈수록 늘어나고 있다. 편리하다는 점을 이용해서 엄청난 양의 스팸 메일도 매일 같이 쏟아져 나오고 있다. 본 논문에서는 사용자 개인에 맞게 메일을 자동 관리해 주는 즉 개인화된 분류가 가능하고, 또 언제 어디서나 로그인이 가능한 웹 메일 기반인 웹 메일 필터링 에이전트(Web Mail Filtering Agent for Personalized Classification)를 제안한다. 새로운 메일이 오면, 먼저 사용자의 메일 처리과정을 일정 기간 관찰하여 각각 개인에 맞는 룰(Personal rule)을 형성하고, 만들어진 룰을 바탕으로 메시지를 자동 관리 즉 카테고리별 분류ㆍ저장 및 개인에게 불필요한 메일이나 스팸 메일을 삭제 해 주는 것이다. 또한 시스템의 정확도를 높이기 위해 동적 임계치를 이용한 베이지안 알고리즘을 적용하였다.