본 연구는 고객-서비스 제공자 관계에 있어, 그 주도권이 고객에게로 기울어 진 현재의 마케팅환경에서 어떠한 상황적 요인이 고객을 자발적으로 서비스제공자와의 관계에 더 몰입하게 만들 수 있는지에 대한 이론적, 실무적 통찰을 얻기 위해 실시되었다. Baard, Deci and Ryan(2004), De charms(1968)와 Deci, Ryan(2002)이 제시한 자율성 지지환경과 접점에서의 종업원의 커뮤니케이션(Komiak and Benbasat 2006). 등이 관계발전에 기여하는 바를 개인의 자기결정성과 함께 고려하여 구조방정식 모형을 통한 가설검증을 시도하였다. 고객-서비스 제공자 간의 관계에서의 고객의 자기결정성의 지각정도를 파악하고, 나아가서 이렇게 형성된 자기결정성이 고객만족(Bansel, Taylor and James 2005) 및 관계지속의도 등에 미치는 영향을 검증함으로써 연구의 목적을 달성하였다. 연구의 결과를 통해 Dholakia(2006)를 시작으로 일부 연구자들에 의해서 실시된 자기결정이론의 마케팅 분야에의 적용범위를 확장하였고, 고객과 서비스제공자 관계에서의 고객의 자기결정성 관련 연구에 이론적인 바탕을 더 해 줄 수 있을 것으로 판단되며, 서비스 업체들의 접점관리와 종업원 관리에 있어서도 많은 실무적인 시사점을 제시할 수 있을 것이다.
정보기술의 발전과 인터넷 사용의 증가로 이용가능한 정보들의 양이 폭발적으로 증가한다. 콘텐츠 추천 시스템은 사용자가 원하지 않는 정보를 필터링하고 유용한 정보를 추천하는 서비스를 제공한다. 기존의 추천 시스템은 데이터마이닝 기법으로 웹 접속 기록 및 유형과 사용자가 요구하는 정보를 서비스 제공자 측면에서 분석하여 콘텐츠를 제공한다. 사용자의 선호도와 생활패턴 등의 사용자 측면에서의 정보들의 표현이 어려웠기 때문에 제한된 서비스를 제공할 수 밖에 없었다. 시맨틱 웹 기술은 이미지, 문서 등의 모든 객체를 대상으로 목적에 맞는 정보를 수집, 가공, 응용할 수 있도록 데이터 간에 잘 정의된 의미 있는 관계를 만들 수 있다. 본 논문에서는 시맨틱 웹 환경에서 개인화 프로파일을 동적으로 갱신하여 반영할 수 있는 콘텐츠 추천 검색 시스템을 제안한다. 개인화 프로파일은 프로파일의 특징을 담고 있는 컬렉터, 다양한 컬렉터들로부터 프로파일을 수집하는 수집기, 프로파일 특성에 기반한 고유의 프로파일 컬렉터를 해석하는 해석기로 구성된다. 개인화 모듈은 콘텐츠 추천 서버에서 개인화 프로파일과 주기적으로 동기화할 수 있도록 도와준다. 추천 콘텐츠로 음악을 선택하여 서비스 시나리오에 따라 개인화 프로파일이 콘텐츠 추천 서버에 전달되어 사용자의 선호도와 생활패턴이 반영된 추천리스트를 제공하는지 실험한다.
전자상거래 시장이 빠르게 성장하면서 다양한 유형의 제품이 출시되고 있으며, 이로 인해 사용자들은 구매 의사결정과정에 많은 시간이 소요되는 정보 과부하 문제에 직면하고 있다. 따라서 사용자에게 맞춤형 제품 및 서비스를 제공해줄 수 있는 개인화 추천 서비스의 중요성이 대두되고 있다. 대표적으로 Netflix, Amazon, Google 등 세계적 기업은 개인화 추천 서비스를 도입하여 사용자의 구매 의사결정을 지원하고 있다. 이에 따라 사용자의 정보탐색 비용이 감소하는 효과가 나타났고, 기업의 매출 상승에도 긍정적인 영향을 끼치고 있다. 기존 개인화 추천 서비스 관련 연구에서 주로 사용된 협업필터링(Collaborative Filtering, CF) 기법은 정량화된 정보를 활용하여 사용자의 선호도를 예측하였다. 그러나 정량화된 정보만을 활용하면 사용자의 구매 의도는 고려하지 못하므로 추천 성능이 저하될 수 있다는 문제점이 제기되고 있다. 이와 같은 기존 연구의 문제점을 개선하기 위해 최근에는 사용자가 작성한 리뷰를 활용한 개인화 추천 서비스 연구가 활발히 진행되고 있다. 그러나 리뷰에는 광고성 내용, 거짓 후기, 의미를 전혀 파악할 수 없거나 제품과 관련 없는 내용 등 구매의사결정을 저해하는 요소들이 포함되어 있다. 이러한 요소들이 포함된 리뷰를 활용하여 추천 서비스를 제공하게 되면, 추천 성능이 저하되는 문제가 발생할 수 있다. 따라서 본 연구에서는 이러한 문제점을 개선하기 위해 Convolutional Neural Network(CNN) 기반 리뷰 유용성 점수 예측을 통한 새로운 추천 방법론을 제안하였다. 본 연구에서 제안하는 유용한 리뷰를 포함하는 방법론과 기존 모든 선호도 평점을 고려하는 추천 방법론을 비교한 결과, 본 연구에서 제안한 방법론이 더 우수한 예측 성능을 나타내고 있음을 확인할 수 있었다. 또한 본 연구의 결과는 리뷰 유용성에 대한 정보를 개인화 추천 서비스에 반영하면 전통적인 CF의 성능을 향상할 수 있음을 시사한다.
세계에는 수많은 사람들이 살아가고 있고, 사람들의 일상으로부터 매일, 매 시간 단위로 새로운 뉴스가 발생한다. 발생되는 뉴스는 예정된 일과 예상하지 못한 일들을 포함하고 있다. 발생하는 뉴스의 거대한 양과 이를 전달하는 수많은 미디어들로 인해 사람들은 뉴스 콘텐츠를 이용하는데 많은 시간을 소비하게 된다. 하지만 미디어에 시시각각 나타나는 속보와 실시간 이슈의 대부분이 가십 기사로 이루어져 있어 사용자들이 자신의 성향에 맞는 뉴스를 선별하고, 뉴스로부터 정보를 획득하는 것은 쉽지 않은 일이다. 또한 사용자의 관심사가 시간에 따라 변하기 때문에 뉴스 제공에 있어 사용자의 변하는 관심사를 반영하는 것이 요구된다. 본 논문에서는 사용자의 최근 관심사를 기반으로 사용자 선호도에 맞는 뉴스를 제공하기 위한 콘텐츠 기반의 추천 기법 및 시스템을 제안한다. 사용자의 최근 선호도를 파악하기 위하여 소셜 네트워크 서비스인 Facebook 사용자의 정보와 최근 게시글을 이용하여 동적으로 사용자 프로파일을 생성하여 이를 뉴스 서비스에 활용하고, 사용자 선호도에 적합한 뉴스를 추출하기 위해서 뉴스 콘텐츠의 분석을 요구한다. 뉴스 콘텐츠 분석을 위해 미디어에서 제공되는 뉴스의 카테고리를 사용하고, 뉴스 방송원고의 분석 및 주요 키워드 추출을 통해 뉴스 프로파일을 생성한다. 사용자 프로파일과 뉴스 프로파일 간의 유사도 측정을 위해서는 두 프로파일 간 형식의 일치화가 요구되므로 사용자 프로파일을 뉴스 프로파일과 동일한 형태로 생성한다. 사용자가 시스템에 접속하면 시스템은 사용자 프로파일에 명시된 선호도를 기반으로 뉴스 프로파일과의 유사도를 측정하고, 사용자 선호도에 가장 적합한 뉴스들을 제공하게 된다. 또한 사용자에게 제공된 뉴스 프로파일과 다른 뉴스 프로파일들 간에 유사도를 측정하여 유사도가 높은 관련된 뉴스들을 제공하게 된다. 제안한 개인화된 뉴스 서비스의 성능을 평가하기 위해 사용자에게 추천된 뉴스에 대한 사용자 평가와 시스템 예측값의 오차를 기반으로 6Sub-Vectors 벤치마크 알고리즘과 성능 평가를 수행하였고, 실험 결과를 통해 제안한 시스템의 우수성을 입증하였다.
본 논문의 목적은 정보 시스템 개발 단계에서 3종(논문, 보고서, 과제)콘텐츠를 융 복합하여 정보 필터링과 시각화에 기반하여 연구자들이 이용하기 편한 국가R&D정보 내비게이션 시스템을 개발하는 것이다. 이전 단계인 정보 서비스 기획 단계에서 조사된 사용자 니즈 분석과 정보 시각화 요소를 반영하여 본 논문에서는 화면 프로토타입을 작성한 후 3종 콘텐츠에 대해 온톨로지와 RDF를 구축하고 정보 필터링과 시맨틱 검색 기술을 적용하여 정보 시스템을 개발한다. 정보 필터링을 위한 척도를 지수화하기 위해 본 논문에서는 R&D내비게이션 인덱스를 제안하여 구현하고,R&D 콘텐츠를 정보 시각화를 통해 종합적으로 검색할 수 있는 국가R&D정보 내비게이션 시스템을 개발하고, 개발된 시스템에 대해 100명을 대상으로 디자인 선호도 조사를 실시하고 실제 사용자 10명을 대상으로 사용성을 테스트한다. 디자인 선호도 결과도 85%가 긍정적으로 나타났고 사용성 테스트 결과 종합적으로 87.2점으로 시인성은 좋으나 향후 개인화 기능 개발이 더 필요하다고 조사되었다. 본 논문에서 제안되고 구현된 논문의 R&D 내비게이션 지수가 정량적 객관성을 제시하고 향후 다른 콘텐츠의 정보 필터링 지수 개발로 이어지길 기대한다.
정보 통신과 스마트폰 등의 발달로 인한 편리한 접근성과 다양한 아이템의 종류로 인해 개인 맞춤형 추천의 필요성은 점차 커지고 있다. 날씨 및 기상환경은 사용자의 장소 및 활동의 의사결정에 많은 영향을 미친다. 이러한 날씨 정보를 이용하면 추천에 대한 사용자의 만족도를 높일 수 있다. 본 논문에서는 모바일 플랫폼에서 사용자의 위치 정보에 대한 생활지수를 활용하여 성향이 유사한 사용자를 구하고 장소에 대한 선호도를 예측하여 장소를 추천함으로써 생활지수를 이용한 협업 필터링 기반 장소 추천 시스템을 제안한다. 제안된 시스템은 사용자의 날씨를 분석하고 분류하기 위한 날씨 모듈과 장소 추천을 위한 협업 필터링을 사용하는 추천 모듈, 그리고 사용자의 선호도 및 후기 관리를 위한 관리 모듈로 구성된다. 실험 결과, 제안된 시스템은 협업 필터링 알고리즘과 생활지수의 융합 및 개인의 성향을 반영하는 측면에서 유효함을 확인할 수 있었다.
본 논문은 연구 학습 주제 지식베이스를 통한 소셜컴퓨팅 지원에 관한 연구로 두 가지 하부 연구로 구성되었다. 첫 번째 연구는 다양한 학문분야에서 전자 도서관 이용자들의 연구 및 학습 주제를 추출하기 위해 분야별로 분류가 잘 되어 있는 NDLTD Union catalog의 석박사 학위 논문 (Electronic Theses and Dissertations : ETDs)을 분석하여 계층적 지식베이스를 구축하는 연구이다. 석박사 학위 논문 이외에 ACM Transactions 저널의 논문과 컴퓨터 분야 국제 학술대회 웹사이트도 추가로 분석하였는데 이는 컴퓨팅 분야의 보다 세분화된 지식베이스를 얻기 위해서이다. 계층적 지식베이스는 개인화 서비스, 추천시스템, 텍스트 마이닝, 기술기회탐색, 정보 가시화 등의 정보서비스와 소셜컴퓨팅에 유용하게 사용될 수 있다. 본 논문의 두 번째 연구 부분에서는 우리가 만든 계층적 지식기반을 활용하여 4개의 사용자 커뮤니티 마이닝 알고리즘 중에서 우리가 수행중인 소셜 컴퓨팅 연구, 즉 구성원간의 결합도에 기반한 추천시스템에 최상의 성능을 보이는 그룹핑 알고리즘을 찾는 성능 평가 연구 결과를 제시하였다. 우리는 이 논문을 통해서 우리가 제안하는 연구 학습 주제 데이터베이스를 사용하는 방법이 기존에 사용자 커뮤니티 마이닝을 위해 사용되던 비용이 많이 필요하고, 느리며, 개인정보 침해의 위험이 있는 인터뷰나 설문에 기반한 방법을 자동화되고, 비용이 적게 들고, 빠르고, 개인정보 침해 위험이 없으며, 반복 수행시에도 일관된 결과를 보여주는 방법으로 대체할 수 있음을 보이고자 한다.
디지털 방송의 시작과 함께, 지상파, 위성, 케이블과 같은 다양한 매체를 통한 다채널 방송 시청 환경의 도래는 사용자에게 많은 방송 프로그램 시청 정보를 전달하게 되었다. 이와 더불어, 방송 단말에 전송된 다양한 방송 프로그램 정보를 탐색하고 선호 방송 프로그램을 선별하기 위해서는 사용자에게 많은 노력이 요구된다. 따라서, 사용자로 하여금 자신의 취향 및 자신이 원하는 방송 프로그램 정보에 자동적으로 근접할 수 있도록 하는 개인화된 방송 서비스가 요구되고 있다. 이러한 요구에 따라, 본 논문에서는 다채널 방송 시청 환경 하에서 사용자의 방송 프로그램 시청 히스토리를 분석하고, 특정 시간에 따른 사용자의 방송 프로그램 시청 패턴윽 추출하여 방송 프로그램 장르에 대한 사용자 선호도를 자동으로 계산하는 알고리즘을 제안하고. MPEG-7 MDS 구조에 따른 사응자 선호토 서술과 이를 이용하여 사용자의 선호도에 따라 방송 프로그램을 자동적으로 추천하는 TV 프로그램 추천 어플리케이션을 소개한다. 본 논룬의 실헐을 위해 AC Nielsen Korea에서 제공된 실제 연령대별, 성별, 시간대별로 사용자의 TV 시청 자료를 사용하였으며, 실험결과를 통해 본 논문에 제안된 베이시안 네트워크 기반 사용자 자동 학습 알고리즘이 효과적으로 사용자 선호도를 학습한 수 있음을 확인하였다.
본 연구는 정보제공원(AI 챗봇 vs. 상담원)에 따라 추천하는 제품에 대한 태도와 선택연기에 미치는 영향에 차이가 있는지 살펴보고, 이러한 차이가 발생하게 된 심리적 프로세스에 대해 정보신뢰와 불확실성을 중심으로 살펴보았다. 또한, AI 챗봇이 추천하는 제품에 대한 선택연기를 감소하기 위한 방안으로 의인화의 역할과 사회적 실재감, 지각된 개인화의 순차적 매개효과에 대해 살펴보았다. 이를 살펴보기 위해 3회의 실험을 수행하였다. 실험 1은 256명을 대상으로 시나리오 기법을 사용하여 여행상품 구매과정에서 정보제공원(AI 챗봇 vs. 상담원)에 따른 정보신뢰와 제품태도에 미치는 영향과 불확실성과 선택연기에 미치는 영향에 대해 살펴보고자 하였다. 실험 2는 160명을 대상으로 AI 챗봇의 의인화 여부에 따른 사회적 실재감, 지각된 개인화, 선택연기에 미치는 영향에 대해 살펴보고자 하였다. 연구결과는 다음과 같다. 첫째, 소비자는 AI 챗봇(vs. 상담원)이 추천하는 제품정보를 신뢰하여 더 긍정적인 제품태도를 보이는 것으로 나타났다. 둘째, 소비자는 AI 챗봇(vs. 상담원)이 추천하는 제품을 구매할지 선택하는 상황에서 오히려 불확실성을 지각하여 선택연기가 높게 나타났다. 셋째, 소비자는 의인화된 AI 챗봇(vs. 비의인화된 AI 챗봇)이 추천하는 제품에 대한 선택연기는 사회적 실재감과 지각된 개인화를 통해 감소하는 것으로 나타났다. 마지막으로 연구결과를 기반으로 시사점과 향후 연구방향에 대해 논의하였다.
디지털 트윈은 현실세계의 물리적 객체를 디지털 세계의 가상객체로 모사하고 시뮬레이션을 통해 미래에 발생 가능한 현상을 예측함으로써, 현실세계의 문제를 해결 또는 최적화하기 위해 고안된 M&S(Modeling and Simulation) 기술이다. 디지털 트윈은 지금까지 도시, 산업 시설 등 대규모 환경에서 특정 목적을 달성하기 위해 수집된 다양한 데이터 기반으로 정교하게 설계되고 활용되어 왔다. 이러한 디지털 트윈 기술을 실생활에 적용하고 사용자 맞춤형 서비스 기술로 확장하기 위해서는 개인정보 보호, 시뮬레이션의 개인화 등 실질적이지만 민감한 문제를 해결해야 한다. 이러한 문제를 해결하기 위해 본 논문에서는 개인화 디지털 트윈을 위한 연합학습 기반의 클라이언트 훈련 가속 방식(FACTS)을 제안한다. 기본적인 접근 방식은 클러스터 기반의 적응형 연합학습 훈련 절차를 활용해 개인정보를 보호하면서 동시에 사용자와 유사한 훈련 모델을 선택하고 훈련을 가속하는 것이다. 다양한 통계적으로 이질적인 조건의 실험 결과 FACTS는 기존의 FL 방식에 비해 훈련 속도 및 자원 효율성 측면에서 우수한 것으로 나타난다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.