Kim, Young-Ouk;Park, Chang-Woo;Sung, Ha-Gyeong;Park, Chang-Han;Namkung, Jae-Chan
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2003년도 ISIS 2003
/
pp.628-631
/
2003
In this paper, we present real-time, accurate face region detection and tracking technique for an intelligent surveillance system. It is very important to obtain the high-resolution images, which enables accurate identification of an object-of-interest. Conventional surveillance or security systems, however, usually provide poor image quality because they use one or more fixed cameras and keep recording scenes without any cine. We implemented a real-time surveillance system that tracks a moving person using four pan-tilt-zoom (PTZ) cameras. While tracking, the region-of-interest (ROI) can be obtained by using a low-pass filter and background subtraction. Color information in the ROI is updated to extract features for optimal tracking and zooming. The experiment with real human faces showed highly acceptable results in the sense of both accuracy and computational efficiency.
We propose laser scanner sensor system based walking pattern and tracking method of multiple human. This system uses laser scanners sensors and is applicable to wide and crowded area such as hospital and medical care center. The primary objective of this research is to promote the development of robust, repeatable and transferable software for security system that can automatically detect, track and follow people in public area. We developed the method of human identification for this system. Our method is following: 1. Best-walking pattern data are obtained by the help of human position and direction data obtained by laser scanners. 2. Human identification is conducted by calculating the correlation between the step length of walking human. It becomes possible to conduct human identification even in crowded scenes by estimating the movements of waling human' feet are periodic. In the experiment in the station, some effectiveness of this method became clear.
Detecting human in images is a challenging task owing to their variable appearance and the wide range of poses the they can adopt. The first need is a robust feature set that allows the human form to be discriminated cleanly, even in cluttered background under difficult illumination. A large number of vision application rely on matching keypoints across images. These days, the deployment of vision algorithms on smart phones and embedded device with low memory and computation complexity has even upped the ante: the goal is to make descriptors faster compute, more compact while remaining robust scale, rotation and noise. In this paper we focus on improving the speed of pedestrian(walking person) detection using Histogram of Oriented Gradient(HOG) descriptors provide excellent performance and tracking using kalman filter.
This paper presents a set of techniques used in a real-time visual surveillance system. The system is implemented on a low-cost embedded DSP platform that is designed to work with stationary video sources. It consists of detection, a tracking and a classification module. The detector uses a statistical method to establish the background model and extract the foreground pixels. These pixels are grouped into blobs which are classified into single person, people in a group and other objects by the dynamic periodicity analysis. The tracking module uses mean shift algorithm to locate the target position. The system aims to control the human density in the surveilled scene and detect what happens abnormally. The major advantage of this system is the real-time capability and it only requires a video stream without other additional sensors. We evaluate the system in the real application, for example monitoring the subway entrance and the building hall, and the results prove the system's superior performance.
This paper presents a method for detection of an emergency signal expressed by arm gestures based on motion segmentation and face area detection in the surveillance system. The important indicators of emergency can be arm gestures and voice. We define an emergency signal as the 'Help Me' arm gestures in a rectangle around the face. The 'Help Me' arm gestures are detected by tracking changes in the direction of the horizontal motion vectors of left and right arms. The experimental results show that the proposed method successfully detects 'Help Me' emergency signal for a single person and distinguishes it from other similar arm gestures such as hand waving for 'Bye' and stretching. The proposed method can be used effectively in situations where people can't speak, and there is a language or voice disability.
본 논문에서는 무선인터넷 플랫폼의 표준인 WIPI와 사람추적시스템을 결합한 모바일 사람추적 감시시스템을 제안한다. 제안된 시스템은 보안시스템이 가동된 시간 내에 침입자가 보안영역에 들어오면 침입자를 추적하여 추적된 영상과 추적정보를 사용자의 WIPI 단말기로 전송함으로써, 사용자가 언제 어디서나 손쉽게 여러 곳의 감시구역을 감시하고 감시결과를 인지할 수 있는 원격모니터링 서비스를 제공할 수 있도록 설계하였다. 또한 제안된 시스템은 다수의 CCTV에 촬영된 영상을 영상처리를 통해 설계된 사람모델을 이용하여 사람을 추적하고, 어떤 카메라에서 사람이 추적되었는지, 추적된 사람의 상태가 어떠한지, 몇몇의 사람이 침입하였는지 등의 침입상황을 사용자의 단말기를 통해 추적상황을 알려준다. 본 시스템은 추적된 정보를 모바일 클라이언트로 전송되는 것을 확인하기 위하여 WIPI SDK를 이용하여 구현하였다. 또한 감시된 상황을 서버에 자동적으로 저장함으로써 추후에 사용자가 감시상황을 재확인하고자 했을 시, 카메라별 또는 시간 별로 선택하여 영상을 재확인 할 수 있다.
This study is about e-Book program based on human-computer interaction(HCI) system for physically handicapped person. By acquiring background knowledge of HCI, we know that if we use vision-based interface we can replace current computer input devices by extracting any characteristic point and tracing it. We decided betweeneyes as a characteristic point by analyzing facial input image using webcam. But because of three-dimensional structure of glasses, the person who is wearing glasses wasn't suitable for tracing between-eyes. So we changed characteristic point to the bridge of the nose after detecting between-eyes. By using this technique, we could trace rotation of head in real-time regardless of glasses. To test this program's usefulness, we conducted an experiment to analyze the test result on actual application. Consequently, we got 96.5% rate of success for controlling e-Book under proper condition by analyzing the test result of 20 subjects.
This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.
In this paper, we describe correspondence among multiple images taken by multiple cameras. The correspondence among multiple views is an interesting problem which often appears in the application like visual surveillance or gesture recognition system. We use the principal axis and the ground plane homography to estimate foot of human. The principal axis belongs to the subtracted silhouette-based region of human using subtraction of the predetermined multiple background models with current image which includes moving person. For the calculation of the ground plane homography, we use landmarks on the ground plane in 3D space. Thus the ground plane homography means the relation of two common points in different views. In the normal human being, the foot of human has an exactly same position in the 3D space and we represent it to the intersection in this paper. The intersection occurs when the principal axis in an image crosses to the transformed ground plane from other image. However the positions of the intersection are different depend on camera views. Therefore we construct the correspondence that means the relationship between the intersection in current image and the transformed intersection from other image by homography. Those correspondences should confirm within a short distance measuring in the top viewed plane. Thus, we track a person by these corresponding points on the ground plane. Experimental result shows the accuracy of the proposed algorithm has almost 90% of detecting person for tracking based on correspondence of intersections.
본 논문은 캠퍼스 내 건물별 출입구에 출입명부를 관리할 수 있는 장치를 설치하고, 수집된 데이터를 근거로 코로나19 확진자에 대한 감시 및 추적 시스템을 소개한다. 기존 QR 기반의 전자출입명부는 스마트폰으로 QR 코드를 인식해야 하는 불편함과 건물 내 출입자의 온도를 측정할 수 없다는 단점이 있다. 또한, 국가가 캠퍼스 내의 확진자와 접촉자 정보를 관리함에 있어, 구성원들에게 신속한 정보 공유와 추적이 쉽지 않다. 이는 확진자와 밀접 접촉한 이가 또 다른 확진자를 만드는 경우를 초래할 수 있다. 따라서, 본 논문에서는 이에 대응하기 위해 얼굴 인식 기능과 온도센서를 포함한 장치를 캠퍼스 내 건물 출입구에 설치하고, 관리자가 실시간으로 건물별 구성원들의 출입현황을 모니터링하여 신속하게 추적할 수 있는 기능을 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.