• Title/Summary/Keyword: person recognition

Search Result 599, Processing Time 0.02 seconds

Uncooperative Person Recognition Based on Stochastic Information Updates and Environment Estimators

  • Kim, Hye-Jin;Kim, Dohyung;Lee, Jaeyeon;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.395-405
    • /
    • 2015
  • We address the problem of uncooperative person recognition through continuous monitoring. Multiple modalities, such as face, height, clothes color, and voice, can be used when attempting to recognize a person. In general, not all modalities are available for a given frame; furthermore, only some modalities will be useful as some frames in a video sequence are of a quality that is too low to be able to recognize a person. We propose a method that makes use of stochastic information updates of temporal modalities and environment estimators to improve person recognition performance. The environment estimators provide information on whether a given modality is reliable enough to be used in a particular instance; such indicators mean that we can easily identify and eliminate meaningless data, thus increasing the overall efficiency of the method. Our proposed method was tested using movie clips acquired under an unconstrained environment that included a wide variation of scale and rotation; illumination changes; uncontrolled distances from a camera to users (varying from 0.5 m to 5 m); and natural views of the human body with various types of noise. In this real and challenging scenario, our proposed method resulted in an outstanding performance.

Person Recognition using Ocular Image based on BRISK (BRISK 기반의 눈 영상을 이용한 사람 인식)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.881-889
    • /
    • 2016
  • Ocular region recently emerged as a new biometric trait for overcoming the limitations of iris recognition performance at the situation that cannot expect high user cooperation, because the acquisition of an ocular image does not require high user cooperation and close capture unlike an iris image. This study proposes a new method for ocular image recognition based on BRISK (binary robust invariant scalable keypoints). It uses the distance ratio of the two nearest neighbors to improve the accuracy of the detection of corresponding keypoint pairs, and it also uses geometric constraint for eliminating incorrect keypoint pairs. Experiments for evaluating the validity the proposed method were performed on MMU public database. The person recognition rate on left and right ocular image datasets showed 91.1% and 90.6% respectively. The performance represents about 5% higher accuracy than the SIFT-based method which has been widely used in a biometric field.

Face Recognition Using Automatic Face Enrollment and Update for Access Control in Apartment Building Entrance (아파트 공동현관 출입 통제를 위한 자동 얼굴 등록 및 갱신 기반 얼굴인식)

  • Lee, Seung Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1152-1157
    • /
    • 2021
  • This paper proposes a face recognition method for access control of apartment building. Different from most existing face recognition methods, the proposed one does not require any manual process for face enrollment. When a person is exiting through the main entrance door, his/her face data (i.e., face image and face feature) are automatically extracted from the captured video and registered in the database. When the person needs to enter the building again, the face data are extracted and the corresponding face feature is compared with the face features registered in the database. If a matching person exists, the entrance door opens and his/her access is allowed. The face data of the matching person are immediately deleted and the database has the latest face data of outgoing person. Thus, a higher recognition accuracy could be expected. To verify the feasibility of the proposed method, Python based face recognition has been implemented and the cloud service provided by a web portal.

Footprint-based Person Identification Method using Mat-type Pressure Sensor

  • Jung, Jin-Woo;Lee, Sang-Wan;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.106-109
    • /
    • 2003
  • Many diverse methods have been developing in the field of biometric identification as human-friendliness has been emphasized in the intelligent system's area. One of emerging method is to use human footprint. Automated footprint-based person recognition was started by Nakajima et al.'s research but they showed relatively low recognition result by low spatial resolution of pressure sensor and standing posture. In this paper, we proposed a modified Nakajima's method to use walking footprint which could give more stable toe information than standing posture. Finally, we prove the usefulness of proposed method as 91.4tt recognition rate in 11 volunteers' test.

  • PDF

A Personalized Hand Gesture Recognition System using Soft Computing Techniques (소프트 컴퓨팅 기법을 이용한 개인화된 손동작 인식 시스템)

  • Jeon, Moon-Jin;Do, Jun-Hyeong;Lee, Sang-Wan;Park, Kwang-Hyun;Bien, Zeung-Nam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2008
  • Recently, vision-based hand gesture recognition techniques have been developed for assisting elderly and disabled people to control home appliances. Frequently occurred problems which lower the hand gesture recognition rate are due to the inter-person variation and intra-person variation. The recognition difficulty caused by inter-person variation can be handled by using user dependent model and model selection technique. And the recognition difficulty caused by intra-person variation can be handled by using fuzzy logic. In this paper, we propose multivariate fuzzy decision tree learning and classification method for a hand motion recognition system for multiple users. When a user starts to use the system, the most appropriate recognition model is selected and used for the user.

Face Recognition Using a Facial Recognition System

  • Almurayziq, Tariq S;Alazani, Abdullah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.280-286
    • /
    • 2022
  • Facial recognition system is a biometric manipulation. Its applicability is simpler, and its work range is broader than fingerprints, iris scans, signatures, etc. The system utilizes two technologies, such as face detection and recognition. This study aims to develop a facial recognition system to recognize person's faces. Facial recognition system can map facial characteristics from photos or videos and compare the information with a given facial database to find a match, which helps identify a face. The proposed system can assist in face recognition. The developed system records several images, processes recorded images, checks for any match in the database, and returns the result. The developed technology can recognize multiple faces in live recordings.

지체장애 인식에 대한 개념분석

  • Jeong, Myeong-Sil
    • The Korean Nurse
    • /
    • v.35 no.4
    • /
    • pp.64-74
    • /
    • 1996
  • In general. social cognition for a disabled person seemed that he was limited aspects of emotion and psychology. Thus he was rejected. avoided. worthless and not accepted. People who have been raised in an ethnic collectivity often acquire from that experience not only basic conceps and attitudes toward health and illness but also fundamental styles of interpersonal behavior and concerns about the world. The effects of this enculuration carryover into health- care situation and also become an important influence on personal activities devoted to health maintenance and disease prevention. Our Korean culture is a state of tradition Confucianism. respects his honor and external feature. Therefore recognition of a disabled person is more specipic. This study uses Walker and Avant's process of concept analysis. The concep of recognition of disabilty can be defined as follows : Recognition of disability is a person's conscious process of sensation. perception. memory and thought and is constructed from value. attitude. emotion and expierince which is dynamics. and in everyday life is feeling that basic activity is not free and occurs interaction of envionment. Attributes of disability recognition are defined as 1) It is feeling that basic activity of his daily life is not free in everyday life. 2) It is a person's conscious process of sensation. perception. memory and thought. 3) It occurs interaction of enviornment. 4) It is constructed from value. attitude. emotion and experience. 5) it is dynamics ( changing but not stasis). Nurse is always suppoted and pushed him. She plans institutional and situational surroundings.

  • PDF

Illumination Robust Face Recognition using Ridge Regressive Bilinear Models (Ridge Regressive Bilinear Model을 이용한 조명 변화에 강인한 얼굴 인식)

  • Shin, Dong-Su;Kim, Dai-Jin;Bang, Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • The performance of face recognition is greatly affected by the illumination effect because intra-person variation under different lighting conditions can be much bigger than the inter-person variation. In this paper, we propose an illumination robust face recognition by separating identity factor and illumination factor using the symmetric bilinear models. The translation procedure in the bilinear model requires a repetitive computation of matrix inverse operation to reach the identity and illumination factors. Sometimes, this computation may result in a nonconvergent case when the observation has an noisy information. To alleviate this situation, we suggest a ridge regressive bilinear model that combines the ridge regression into the bilinear model. This combination provides some advantages: it makes the bilinear model more stable by shrinking the range of identity and illumination factors appropriately, and it improves the recognition performance by reducing the insignificant factors effectively. Experiment results show that the ridge regressive bilinear model outperforms significantly other existing methods such as the eigenface, quotient image, and the bilinear model in terms of the recognition rate under a variety of illuminations.

A Design and Implementation of Missing Person Identification System using face Recognition

  • Shin, Jong-Hwan;Park, Chan-Mi;Lee, Heon-Ju;Lee, Seoung-Hyeon;Lee, Jae-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • In this paper proposes a method of finding missing persons based on face-recognition technology and deep learning. In this paper, a real-time face-recognition technology was developed, which performs face verification and improves the accuracy of face identification through data fortification for face recognition and convolutional neural network(CNN)-based image learning after the pre-processing of images transmitted from a mobile device. In identifying a missing person's image using the system implemented in this paper, the model that learned both original and blur-processed data performed the best. Further, a model using the pre-learned Noisy Student outperformed the one not using the same, but it has had a limitation of producing high levels of deflection and dispersion.

Two person Interaction Recognition Based on Effective Hybrid Learning

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Kim, Jin Woo;Bashar, Md Rezaul;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.751-770
    • /
    • 2019
  • Action recognition is an essential task in computer vision due to the variety of prospective applications, such as security surveillance, machine learning, and human-computer interaction. The availability of more video data than ever before and the lofty performance of deep convolutional neural networks also make it essential for action recognition in video. Unfortunately, limited crafted video features and the scarcity of benchmark datasets make it challenging to address the multi-person action recognition task in video data. In this work, we propose a deep convolutional neural network-based Effective Hybrid Learning (EHL) framework for two-person interaction classification in video data. Our approach exploits a pre-trained network model (the VGG16 from the University of Oxford Visual Geometry Group) and extends the Faster R-CNN (region-based convolutional neural network a state-of-the-art detector for image classification). We broaden a semi-supervised learning method combined with an active learning method to improve overall performance. Numerous types of two-person interactions exist in the real world, which makes this a challenging task. In our experiment, we consider a limited number of actions, such as hugging, fighting, linking arms, talking, and kidnapping in two environment such simple and complex. We show that our trained model with an active semi-supervised learning architecture gradually improves the performance. In a simple environment using an Intelligent Technology Laboratory (ITLab) dataset from Inha University, performance increased to 95.6% accuracy, and in a complex environment, performance reached 81% accuracy. Our method reduces data-labeling time, compared to supervised learning methods, for the ITLab dataset. We also conduct extensive experiment on Human Action Recognition benchmarks such as UT-Interaction dataset, HMDB51 dataset and obtain better performance than state-of-the-art approaches.