• Title/Summary/Keyword: persistent scatterer(PS)

Search Result 5, Processing Time 0.017 seconds

DEFORMATION ANALYSIS IN URBAN AREAS USING PERSISTENT SCATTERER

  • Kim, Sang-Wan;Baek, Jin;Park, Hyuck-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.138-141
    • /
    • 2007
  • The permanent scatterer SAR interferometry (PSInSAR) technique has been developed more recently and has been applied to monitor slow but consistent ground subsidence. Since PSInSAR has the advantages in terms of baseline and temporal decorrelation, PSInSAR technique using X-band may also provide useful information about a ground deformation in detail. We developed our codes for a persistent scatterer analysis, and then apply to ERS-1/2 C-band data over Las Vegas in order to validate our new developed algorithm. Based on this test, PS technique using X-band observation such as TerraSAR-X or KOMSAT 5 will be developed.

  • PDF

Subsidence Due to Groundwater Withdrawal in Kathmandu Basin Detected by Time-series PS-InSAR Analysis

  • Krishnan, P.V.Suresh;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.703-708
    • /
    • 2018
  • In recent years, subsidence due to excessive groundwater withdrawal is a major problem in the Kathmandu Basin. In addition, on 25 April 2015, the basin experienced large crustal displacements caused by Mw 7.8 Gorkha earthquake. In this study, we applied StaMPS- Persistent Scatterer InSAR (StaMPS PS-InSAR) technique to estimate the spatio-temporal displacements in the basin after the mainshock. 34 Sentinel-1 C-band SAR data are used for measuring subsidence velocity during 2015-2017. We found the maximum subsidence velocity of about 9.02 cm/year and mean subsidence rate of about 8.06 cm/year in the line of sight direction, respectively, in the central part of the basin.

Deformation monitoring of Daejeon City using ALOS-1 PALSAR - Comparing the results by PSInSAR and SqueeSAR - (ALOS-1 PALSAR 영상을 이용한 대전지역 변위 관측 - PSInSAR와 SqueeSAR 분석 결과 비교 -)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.567-577
    • /
    • 2016
  • SqueeSAR is a new technique to combine Persistent Scatterer (PS) and Distributed Scatterer (DS) for deformation monitoring. Although many PSs are available in urban areas, SqueeSAR analysis can be beneficial to increase the PS density in not only natural targets but also smooth surfaces in urban environment. The height of each targets is generally required to remove topographic phase in interferometric SAR processing. The result of PSInSAR analysis to use PS only is not affected by DEM resolution because the height error of initial input DEM at each PSs is precisely compensated in PS processing chain. On the contrary, SqueeSAR can be affected by DEM resolution and precision since it includes spatial average filtering for DS targets to increase a signal-to-noise ratio (SNR). In this study we observe the effect of DEM resolution on deformation measurement by PSInSAR and SqueeSAR. With ALOS-1 PALSAR L-band data, acquired over Daejeon city, Korea, two different DEM data are used in InSAR processing for comparison: 1 m LIDAR DEM and SRTM 1-arc (~30 m) DEM. As expected the results of PSInSAR analysis show almost same results independently of the kind of DEM, while the results of SqueeSAR analysis show the improvement in quality of the time-series in case of 1-m LIDAR DSM. The density of InSAR measurement points was also improved about five times more than the PSInSAR analysis.

Persistent Scatterer Selection and Network Analysis for X-band PSInSAR (X-band PSInSAR를 위한 고정산란체 추출 및 네트워크 분석 기법)

  • Kim, Sang-Wan;Cho, Min-Ji
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.521-534
    • /
    • 2011
  • The high-resolution X-band SAR systems such as COSMO-SkyMED and TerraSAR-X have been launched recently. In addition KOMPSAT-5 will be launched in the early of 2012. In this study we developed the new method for persistent scatterer candidate (PSC) selection and network construction, which is more suitable for PSInSAR analysis using multi-temporal X-band SAR data. PSC selection consists in two main steps: first, selection of initial PSCs based on amplitude dispersion index, mean amplitude, mean coherence. second, selection of final PSCs based on temporal coherence directly estimated from network analysis of initial PSCs. To increase the stability of network the Multi- TIN and complex network for non-urban area were addressed as well. The proposed algorithm was applied to twenty-one TerraSAR-X SAR of New Orleans. As a result many PSs were successfully extracted even in non-urban area. This research can be used as the practical application of KOMPSAT-5 for surface displacement monitoring using X-band PSInSAR.

Time-series InSAR Analysis and Post-processing Using ISCE-StaMPS Package for Measuring Bridge Displacements

  • Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin;Kim, Young Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.527-534
    • /
    • 2020
  • This study aims to monitor the displacement of the bridges using Stanford Method for Persistent Scatterers (StaMPS) time-series Persistent Scatterer Interferometric Synthetic Aperture Radar analysis. For case study bridges: Kimdaejung bridge and Deokyang bridge, we acquired 60 and 33 Cosmo-Skymed Synthetic Aperture Radar (SAR) data over the Mokpo region and Yeosu region, respectively from 2013 to 2019. With single-look interferograms, we estimated the long-term time-series displacements over the bridges. The time-series displacements were estimated as -8.8 mm/year and -1.34 mm/year at the mid-span over the selected bridges: Kimdaejung and Deokyang bridge, respectively. This time-series displacement provides reliable and high spatial resolution information to monitor the structural behavior of the bridge for preventing structural behaviors.