• 제목/요약/키워드: peroxisome proliferator-activated receptor ${\gamma}$

검색결과 340건 처리시간 0.026초

Optimization of adipogenic differentiation conditions for canine adipose-derived stem cells

  • Kim, Jong-Yeon;Park, Eun-Jung;Kim, Sung-Min;Lee, Hae-Jeung
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.53.1-53.13
    • /
    • 2021
  • Background: Canine adipose-derived stem cells (cADSCs) exhibit various differentiation properties and are isolated from the canine subcutaneous fat. Although cADSCs are valuable as tools for research on adipogenic differentiation, studies focusing on adipogenic differentiation methods and the underlying mechanisms are still lacking. Objectives: In this study, we aimed to establish an optimal method for adipogenic differentiation conditions of cADSCs and evaluate the role of peroxisome proliferator-activated receptor gamma (PPARγ) and estrogen receptor (ER) signaling in the adipogenic differentiation. Methods: To induce adipogenic differentiation of cADSCs, 3 different adipogenic medium conditions, MDI, DRI, and MDRI, using 3-isobutyl-1-methylxanthine (M), dexamethasone (D), insulin (I), and rosiglitazone (R) were tested. Results: MDRI, addition of PPARγ agonist rosiglitazone to MDI, was the most significantly facilitated cADSC into adipocyte. GW9662, an antagonist of PPARγ, significantly reduced adipogenic differentiation induced by rosiglitazone. Adipogenic differentiation was also stimulated when 17β-estradiol was added to MDI and DRI, and this stimulation was inhibited by the ER antagonist ICI182,780. Conclusions: Taken together, our results suggest that PPARγ and ER signaling are related to the adipogenic differentiation of cADSCs. This study could provide basic information for future research on obesity or anti-obesity mechanisms in dogs.

Ubiquitination of p53 is Involved in Troglitazone Induced Apoptosis in Cervical Cancer Cells

  • Chen, Hui-Min;Zhang, Ding-Guo;Wu, Jin-Xiz;Pei, Dong-Sheng;Zheng, Jun-Nian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2313-2318
    • /
    • 2014
  • Peroxisome proliferator-activated receptor gamma (PPAR-${\gamma}$), a ligand-dependent nuclear transcription factor, has been found to widely exist in tumor tissues and plays an important role in affecting tumor cell growth. In this study, we investigated the effect of PPAR-${\gamma}$ on aspects of the cervical cancer malignant phenotype, such as cell proliferation and apoptosis. Cell growth assay, Western blotting, Annexin V and flow cytometry analysis consistently showed that treatment with troglitazone (TGZ, a PPAR-${\gamma}$ agonist) led to dose-dependent inhibition of cervical cancer cell growth through apoptosis, whereas T0070907 (another PPAR-${\gamma}$ antagonist) had no effect on Hela cell proliferation and apoptosis. Furthermore, we also detected the protein expression of p53, p21 and Mdm2 to explain the underlying mechanism of PPAR-${\gamma}$ on cellular apoptosis. Our work, finally, demonstrated the existence of the TGZ-PPAR-${\gamma}$-p53 signaling pathway to be a critical regulator of cell apoptosis. These results suggested that PPAR-${\gamma}$ may be a potential therapeutic target for cervical cancer.

AMPK 활성화를 통한 (-)-Epigallocatechin-3-gallate의 지방세포분화 억제 효과 (Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Adipogenesis via AMPK Activation in 3T3-L1 Cells)

  • 김영화
    • 한국식품영양학회지
    • /
    • 제30권5호
    • /
    • pp.1035-1041
    • /
    • 2017
  • (-)-Epigallocatechin-3-gallate (EGCG) is a major catechin found in green tea. It is reported that EGCG possesses various health benefits including anti-cancer, antioxidant, anti-diabetes, and anti-obesity. The objective of this study was to investigate the effects of EGCG on adipogenesis via activation of AMP-activated protein kinase (AMPK) pathway in 3T3-L1 preadipocytes. In order to determine the effects of EGCG on adipogenesis, preadipocyte differentiation was induced in the presence or absence of EGCG ($0{\sim}100{\mu}M$) for a period of 6 days. EGCG significantly inhibited fat accumulation and suppressed the expression of adipogenic specific proteins including peroxisome proliferator-activated receptor (PPAR)-${\gamma}$. Also, EGCG markedly increased the activation of AMPK and acetyl-CoA carboxylase (ACC) and the production of intracellular reactive oxygen species (ROS). However, any pretreatment with a specific AMPK inhibitor, compound C, abolished the inhibitory effects of the EGCG on $PPAR{\gamma}$ expression. This study suggests that EGCG has anti-adipogenic effects through modulation of the AMPK signaling pathway and therefore, may be a promising antiobesity agent.

Short Heterodimer Partner as a Regulator in OxLDL-induced Signaling Pathway

  • Kimpak, Young-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2001년도 Proceedings of International Convention of the Pharmaceutical Society of Korea
    • /
    • pp.109-113
    • /
    • 2001
  • Oxidized low-density lipoprotein (oxLDL) has been shown to modulate transactivations by the peroxisome proliferator activated receptor (PPAR)$\gamma$ and nuclear factor-kappa B (NF$\kappa$B). In this study, the oxLDL signaling pathways involved with the NF$\kappa$B transactivation were investigated by utilizing a reporter construct driven by three upstream NF$\kappa$B binding sites, and various pharmacological inhibitors. OxLDL and its constituent lysophophatidylcholine (lysoPC) induced a rapid and transient increase of intracellular calcium and stimulated the NF-KB transactivation in resting RAW264.7 macrophage cells in an oxidation-dependent manner. The NF$\kappa$B activation by oxLDL or lysoPC was inhibited by protein kinase C inhibitors or an intracellular calcium chelator. Tyrosine kinase or PI3 kinase inhibitors did not block the NF$\kappa$B transactivation. Furthermore, the oxLDL-induced NF$\kappa$B activity was abolished by the PPAR$\gamma$ ligands. When the endocytosis of oxLDL was blocked by cytochalasin B, the NF$\kappa$B transactivation by oxLDL was synergistically increased, while PPAR transactivation was blocked. These results suggest that oxLDL activates NF-$\kappa$B in resting macrophages via protein kinase C- and/or calcium-dependent pathways, which does not involve the endocytic processing of oxLDL. The endocytosis-dependent PPAR$\gamma$ activation by oxLDL may function as an inactivation route of the oxLDL induced NF$\kappa$B signal. Short heterodimer partner (SHP), specifically expressed in liver and a limited number of other tissues, is an unusual orphan nuclear receptor that lacks the conventional DNA-binding domain. In this work, we found that SHP expression is abundant in murine macrophage cell line RAW 264.7 but suppressed by oxLDL and its constituent I3-HODE, a ligand for peroxisome proliferator-activated receptor y. Furthermore, SHP acted as a transcription coactivator of nuclear factor-$\kappa$B (NF$\kappa$B) and was essential for the previously described NF$\kappa$B transactivation by lysoPC, one of the oxLDL constituents. Accordingly, NF$\kappa$B, transcriptionally active in the beginning, became progressively inert in oxLDL-treated RAW 264.7 cells, as oxLDL decreased the SHP expression. Thus, SHP appears to be an important modulatory component to regulate the transcriptional activities of NF$\kappa$B in oxLDL-treated, resting macrophage cells.

  • PDF

한국인에서 peroxisome proliferator-activated receptor alpha Leu162Val 유전자 다형성과 대사증후군간의 관련성 (Association between Genetic Polymorphism of Peroxisome Proliferator-Activated Receptor Alpha Leu162Val and Metabolioc Syndrome in Korean)

  • 신승철;송혜순;홍영습;곽종영;유병철;이용환
    • 생명과학회지
    • /
    • 제16권2호
    • /
    • pp.199-205
    • /
    • 2006
  • Peroxisome proliferator-activated receptors alpha (PPAR $\alpha$)는 지질대사와 관련하여 대사증후군 발생과 관련이 있을 수 있는 강력한 잠재 유전자로 고려되고 있으므로 한국인에 있어서 PPAR$\alpha$ L162V 유전자 다형성과 대사증후군과의 연관성을 확인하고자 고신대학교 복음병원에서 2004년 12윌에서 2005년 7월 사이에 건강진단을 받았던 수진자 542명(대사 증후군 : 262명, 정상인 : 280명)을 대상으로 신장, 체증, 체질량지수, 허리둘레와 수축기와 이완기 혈압, 공복 혈당, 총콜레스테롤, HDL 콜레스테롤, LDL 콜레스테롤과 중성지방 수치를 측정하였으며, 대사증후군의 정의는 혈압, 공복 혈당, HDL 콜레스테롤, 중성지방은 NCEP ATP III의 기준을 적용하였고, 허리둘레는 WHO 아시아-서태평양 기준을 적용하였다. PCR-ASO (polymerase chain reaction allele-specific oligonucleotide) 방법에 의해 대상자들의 PPAR$\alpha$ L162V 유전자 다형성을 확인하였다. 연구결과 PPAR$\alpha$ 484번 염기서열의 $C{\rightarrow}G$ 돌연변이가 나타난 사람은 조사대상자 542명 가운데 1명(0.2%) 이었다. 한국인에서는 PPAR$\alpha$ L162V 유전자 다형성이 거의 일어나지 않았으며, 이의 확인을 위하여 더욱 많은 사람을 대상으로 연구가 진행되어야 할 필요가 있을 것으로 생각된다.

Ameliorative effects of black ginseng on nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/high-fructose diet-fed mice

  • Park, Miey;Yoo, Jeong-Hyun;Lee, You-Suk;Park, Eun-Jung;Lee, Hae-Jeung
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.350-361
    • /
    • 2020
  • Background: Black ginseng (BG) is a type of Korean ginseng prepared by steaming and drying raw ginseng to improve the saponin content. This study examined the effects of BG on nonalcoholic fatty liver disease (NAFLD) in HepG2 cells and diet-induced obese mice. Methods: HepG2 cells were treated with free fatty acids to induce lipid accumulation before supplementation with BG. NAFLD-induced mice were fed different doses (0.5%, 1%, and 2%) of BG for 8 weeks. Results: BG significantly reduced lipid accumulation and expression of lipogenic genes, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, sterol regulatory element-binding protein-1c, and fatty acid synthase in HepG2 cells, and the livers of mice fed a 45% high-fat diet with 10% fructose in the drinking water (HFHF diet). BG supplementation caused a significant reduction in levels of aspartate aminotransferase and alanine aminotransferase, while antioxidant enzymes activities were significantly increased in 45% high-fat diet with 10% fructose in the drinking water diet-fed mice. Expression of proliferator-activated receptor alpha and carnitine palmitoyltransferase I were upregulated at the transcription and translation levels in both HepG2 cells and diet-induced obese mice. Furthermore, BG-induced phosphorylation of AMP-activated protein kinase and acetyl CoA carboxylase in both models, suggesting its role in AMP-activated protein kinase activation and the acetyl CoA carboxylase signaling pathway. Conclusion: Our results indicate that BG may be a potential therapeutic agent for the prevention of NAFLD.

천궁(川芎)의 정유 추출물이 3T3-L1 세포의 분화 및 지방 생성에 미치는 영향 (Effects of Essential Oils Extracted from Cnidii Rhizoma on Differentiation and Adipogenesis in 3T3-L1 Adiopocytes)

  • 최수민;김소영;박나리;김정민;양두화;우창훈;김미려;안희덕
    • 한방재활의학과학회지
    • /
    • 제28권3호
    • /
    • pp.13-25
    • /
    • 2018
  • Objectives We investigated anti-obesity effects of essential oils extracted from Cnidii Rhizoma (CR) in immature adipocytes to magnify it's clinical therapeutic usage. Methods Essential oil of CR was extracted with ethyl acetate or petroleum ether and through steam distillation, respectively. Oil red-O staining for monitoring its inhibition effect on adipogenesis and differentiation in murine 3T3-L1 adipocytes and 3-(4,5-methylthiazol-2-yl)-2,5-diphenyletetra zolium bromide (MTT) assay for cell safety were done. Also phospho-adenosine monophosphate (AMP)-activted protein kinase (P-AMPK), AMP-activated protein kinase, phospho-acetyl-CoA carboxylase (P-ACC), acetyl-CoA carboxylase, peroxisome proliferator-activated receptor-${\alpha}$ (PPAR-${\alpha}$), peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$) and CCAAT/enhancer binding protein ${\alpha}$ (C/EBP-${\alpha}$) expressions as obesity-related factors were measured by western blot analysis. Results Protein expressions of P-AMPK, P-ACC and PPAR-${\alpha}$ were increased in essential oils-treated adipocytes compared to those of control group, respectively. Furthermore, protein expressions of PPAR-${\gamma}$ and C/EBP-${\alpha}$ were decreased in essential oils-treated adipocytes compared to those of control group, respectively. Conclusions These results demonstrate that essential oils of CR inhibit adipogenesis and differentiation. Also they promote the oxidation of fatty acids in adipocytes. Thus, results suggest that essential oils of CR could be used as a valuable material for anti-obesity therapeutics via control of lipid metabolism.

$17{\beta}$-estradiol Represses White Adipose Tissue Metabolism by Inhibiting $PPAR{\gamma}$ in High Fat Diet-induced Obese Female Ovariectomized Mice

  • Yoon, Mi-Chung;Jeong, Sun-Hyo
    • 대한의생명과학회지
    • /
    • 제15권3호
    • /
    • pp.171-177
    • /
    • 2009
  • This study investigated whether increased adiposity is prevented by estrogen replacement in female ovariectomized (OVX) C57BL/6J mice, an animal model of human menopause and whether these metabolic changes reflect the inhibitory action of estrogen on peroxisome proliferator-activated receptor $\gamma$ ($PPAR{\gamma}$)-regulated gene expression. Treatment of $17{\beta}$-estradiol for the last one week of the experiment decreased high fat diet-induced body weight gain and white adipose tissue mass compared to OVX control mice. Histological analysis showed that administration of $17{\beta}$-estradiol to mice decreased the size of adipocytes in parametrial adipose tissue versus OVX control mice. In addition, $17{\beta}$-estradiol reduced the adipose expression of $PPAR{\gamma}$ as well as $PPAR{\gamma}$ target genes such as adipocyte fatty acid binding protein and tumor necrosis factor $\alpha$. These results suggest that $17{\beta}$-estradiol may inhibit adiposity through reducing the $PPAR{\gamma}$ activities in female OVX mice.

  • PDF

Novel Polymorphisms of Adrenergic, Alpha-1B-, Receptor and Peroxisome Proliferator-activated Receptor Gamma, Coactivator 1 Beta Genes and Their Association with Egg Production Traits in Local Chinese Dagu Hens

  • Mu, F.;Jing, Y.;Qin, N.;Zhu, H.Y.;Liu, D.H.;Yuan, S.G.;Xu, R.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권9호
    • /
    • pp.1256-1264
    • /
    • 2016
  • Adrenergic, alpha-1B-, receptor (ADRA1B) and peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B) genes are involved in regulation of hen ovarian development. In this study, these two genes were investigated as possible molecular markers associated with hen-housed egg production, egg weight (EW) and body weight in Chinese Dagu hens. Samples were analyzed using the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, followed by sequencing analysis. Two novel single nucleotide polymorphisms (SNPs) were identified within the candidate genes. Among them, an A/G transition at base position 1915 in exon 2 of ADRA1B gene and a T/C mutation at base position 6146 in the 3'- untranslated region (UTR) of PPARGC1B gene were found to be polymorphic and named SNP A1915G and T6146C, respectively. The SNP A1915G (ADRA1B) leads to a non-synonymous substitution (aspartic acid 489-to-glycine). The 360 birds from the Dagu population were divided into genotypes AA and AG, allele A was found to be present at a higher frequency. Furthermore, the AG genotype correlated with significantly higher hen-housed egg production (HHEP) at 30, 43, 57, and 66 wks of age and with a higher EW at 30 and 43 wks (p<0.05). For the SNP T6146C (PPARGC1B), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher HHEP at 57 and 66 wks of age and EW at 30 and 43 wks (p<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AGTC haplotype found to be associated with the highest HHEP at 30 to 66 wks of age and with higher EW at 30 and 43 wks (p<0.05). Collectively, the two SNPs identified in this study might be used as potential genetic molecular markers favorable in the improvement of egg productivity in chicken breeding.

Troglitazone Lowers Serum Triglycerides with Sexual Dimorphism in C57BL/6J Mice

  • Jeong Sun-Hyo;Yoon Mi-Chung
    • 대한의생명과학회지
    • /
    • 제12권2호
    • /
    • pp.65-72
    • /
    • 2006
  • Thiazolidinediones (TZDs) are widely used antidiabetic drugs that activate the nuclear peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$, and thereby improve the metabolic abnormalities linking hypertriglyceridemia to diabetes, hyperglycemia, insulin resistance, and cardiovascular disease. To determine whether the $PPAR{\gamma}$ ligand troglitazone regulates lipid metabolism with sexual dimorphism, we examined the effects of troglitazone on circulating lipids, body weight and the expression of hepatic genes responsible for lipid metabolism in both sexes of C57BL/6J mice. Compared to mice fed a low fat control diet, both sexes of mice fed a troglitazone-treated low fat diet for 14 weeks did not exhibit changes in body weight gain, serum total cholesterol, HDL-cholesterol and LDL-cholesterol levels. However, serum triglycerides were significantly reduced in both sexes of mice, although these effects were more pronounced among males. Furthermore, troglitazone regulated the expression of hepatic genes critical for lipid and lipoprotein metabolism, the magnitudes of which were much higher in males compared to females, as evidenced by results for increased acyl-CoA oxidase and decreased apolipoprotein C-III mRMA levels. These results suggest that $PPAR{\gamma}$ activator troglitazone may exert sexually dimorphic control of serum triglycerides in part through the differential activation of $PPAR{\gamma}$ in liver between male and female mice.

  • PDF