• Title/Summary/Keyword: permeation characteristics

Search Result 348, Processing Time 0.024 seconds

Effect of Ozone on Gas Separation Membranes for On-Board Inert Gas Generation System (OBIGGS) (OBIGGS용 기체 분리막에서 오존이 미치는 영향)

  • Jung, Kyung Nam;Woo, Seung Moon;Kim, Se Jong;Kim, Ji Hyeon;Han, Sang Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.406-413
    • /
    • 2018
  • In OBIGGS, a small amount of ozone in the atmosphere damages the polymer membrane. Therefore, the ozone removal device is installed at the front end to prevent the damage of the membrane by reducing the concentration of ozone in the gas delivered to the membrane. In this study, two hollow fiber membranes, PI and PSf, used to fabrication hollow fiber module with an effective membrane area of $6.37cm^2$ for gas separation in OBIGGS. The ozone concentration in the chamber was maintained at 2-3 ppm. The gas was continuously supplied into the module by using a pump. The gas permeation characteristics and the tensile strength were evaluated as a function of ozone exposure time. The PI-based hollow fiber membrane showed only 20% reduction in the transmittance, and remained its original uniformity without any significant changes. However, when PSf type hollow fiber membranes were used, the permeability decreased by more than 80% and the tensile strength decreased by more than 70%.

Gas Permeation Characteristics of PEBAX-PEI Composite Membranes Containing ZIF-8 Modified with Amine (Amine으로 개질된 ZIF-8을 함유한 PEBAX-PEI 복합막의 기체투과 특성)

  • Yi, Eun Sun;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.679-687
    • /
    • 2020
  • In this study, poly(ether-block-amide) (PEBAX)/zeolitic imidazolate framework-8 (ZIF-8)-polyetherimide (PEI), and PEBAX/amine-modified ZIF-8 (amineZIF-8)-PEI composite membranes were prepared by varying the contents of ZIF-8 and amineZIF-8. Also the gas permeability properties of N2 and CO2 were investigated for each composite membrane. The N2 and CO2 permeability of the PEBAX/ZIF-8-PEI composite membrane increased as the ZIF-8 content increased, while the CO2/N2 selectivity gradually decreased. In the case of the PEBAX/amineZIF-8-PEI composite membrane, the permeability of N2 decreased slightly, and CO2 increased till amineZIF-8 amount was 0.5 wt% and then decreased when the content increased further. The CO2/N2 selectivity was the highest with a value of 78.3 at 0.5 wt% of amineZIF-8. because the amine modification in the amineZIF-8 improves the compatibility between PEBAX and amineZIF-8, It seems that amineZIF-8 was evenly dispersed in PEBAX, which could be greatly influenced by the porousity of ZIF-8 and also the affinity of amine toward CO2.

Gas Permeation Characteristics of CO2 and N2 through PEBAX/ZIF-8 and PEBAX/amineZIF-8 Composite Membranes (PEBAX/ZIF-8과 PEBAX/amineZIF-8 복합막을 통한 CO2와 N2의 기체투과 특성)

  • Hong, Se Ryeong;O, So Young;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.409-419
    • /
    • 2020
  • In this study, PEBAX/ZIF-8 and PEBAX/amineZIF-8 composite membranes were prepared according to the content of zeolitic imidazolate framework-8 (ZIF-8), amine-modified ZIF-8 (amineZIF-8), the gas permeability properties of N2 and CO2 were investigated for each composite membrane. In the case of the PEBAX/ZIF-8 composite membrane, the permeability of N2 and CO2 increased as the ZIF-8 content increased, and in the case of the PEBAX/amineZIF-8 composite membrane, the permeability of N2 and CO2 increased up to 20 wt% of amineZIF-8, but decreased at the higher content. CO2/N2 ideal selectivity increased up to 20 wt% of ZIF-8 and amineZIF-8 contents in both PEBAX/ZIF-8 and PEBAX/ amineZIF-8 composite membranes, and then decreased thereafter, in the case of PEBAX/amineZIF-8 composite membrane was less decreased. The reason for the highest CO2/N2 ideal selectivity at 20 wt% of amineZIF-8 is that amine modification improved the compatibility between PEBAX and amineZIF-8, and thus amineZIF-8 was evenly dispersed in PEBAX, resulting in the greatest effect of the porous ZIF-8 with a 3.4 Å pore size and the amine with affinity for CO2.

Cell Protective Effects of Enzymatic Hydrolysates of Citrus Peel Pectin (귤피 펙틴 유래 효소적 가수분해물의 세포 보호 효과)

  • Kwon, Soon Woo;Ko, Hyun Ju;Bae, Jun Tae;Kim, Jin Hwa;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.75-85
    • /
    • 2016
  • Pectin, a naturally occurring polysaccharide, has in recent years attracted considerable attention. Its benefits are increasingly appreciated by scientists and consumers due to its safety and usefulness. The chemistry and gel-forming characteristics of pectin have enabled to be used in pharmaceutical industry, health promotion and treatment. Yet, it has been rarely used in cosmetics because of its incompatibility with many cosmetic ingredients, including alcohols, and unstable viscosity of pectin gels under various pH and salt conditions. However, low-molecular-weight pectin oligomers have excellent biological activities, and depolymerization of pectin to produce cosmetic ingredients would be very useful. In this study, we attempted the development of cosmetic ingredients using pectin with an excellent effect on human skin. We developed a bio-conversion process that uses enzymatic hydrolysis to produce pectin hydrolysates containing mainly low-molecular-weight pectin oligomers. Gel permeation chromatography was used to determined the ratio of hydrolysis. The molecular weight of the pectin hydrolysates obtained varied between 200 and 2,700 Da. The two newly developed low-molecular-weight pectin hydrolysates, LMPH A and B, had higher anti-oxidative activities than pectin or D-galacturonic. Exposure to UVB radiation induces apoptotic cell death in epidermal cells. Annexin V binding and propidium iodide uptake were measured by flow cytometry to evaluate UVB-induced cell death in HaCaT cells. Both LMPH A and B reduced UVB-induced cell death and increased cell proliferation by 22% and 30% at 0.5% concentration respectively, while pectin had no significant activity. In conclusion, this study suggests that the newly developed low-molecular-weight pectin hydrolysates can be used as safe and biologically active cosmetic ingredients.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Effect of Nonsolvent Additive in Casting Solutions on Polysulfone Membrane Preparation (Polysilfone 막의 제조에 있어 제막용액에 첨가된 비용매의 영향)

  • 한명진
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.157-165
    • /
    • 1996
  • Polysulfone(PS) membranes were prepared from homogeneous PS solutions by the phase inversion technique. When propionic acid(PA) was added into a casting solution of n-methylpyrrolidone(NMP) and PS, precipitation rate of the solution film was accelerated. This kind of acceleration was consistent, even though a precipitating nonsolvent was changed from water to isopropanol. These phenomena were caused by decrease of nonsolvent tolerance in the casting solution due to addition of PA. PS powder was prepared by precipitation of a 3wt% solution in dimethylformamide(DMF) using ethanol as nonsolvent. Gas adsorption analysis of the powder showed that the capillary condensation sites were found in the powder structure. Membranes prepared from PS solution(15wt%) in NMP had the following characteristics of gas adsorption and water permeation. In gas adsorption analysis, the membrane precipitated using isopropanol showed low uptake of nitrogen gas and the capillary condensation sites were not found. On the contrary, a significant amount of the capillary condensation sites was found in the membrane coagulated by water, which was related to increase of nitrogen uptake. tn the membrane prepared froin the solution including PA, an increase of the Henry's law sites and the Langmuir sites was not found clearly. However, the capillary condensation sites were significantly increased, and the water transport also increased.

  • PDF

Separation of Hydrogen-Nitrogen Gases by PDMS-SiO2·B2O3 Composite Membranes (PDMS-SiO2·B2O3 복합막에 의한 수소-질소 기체 분리)

  • Lee, Suk Ho;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2015
  • $SiO_2{\cdot}B_2O_3$ was prepared by trimethylborate (TMB)/tetraethylorthosilicate (TEOS) mole ratio 0.01 at $800^{\circ}C$. PDMS[poly(dimethysiloxane)]-$SiO_2{\cdot}B_2O_3$ composite membranes were prepared by adding porous $SiO_2{\cdot}B_2O_3$ to PDMS. To investigate the characteristics of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane, we observed PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane using TG-DTA, FT-IR, BET, X-ray, and SEM. PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was studied on the permeabilities of $H_2$ and $N_2$ and the selectivity ($H_2/N_2$). Following the results of TG-DTA, BET, X-ray, FT-IR, $SiO_2{\cdot}B_2O_3$ was the amorphous porous $SiO_2{\cdot}B_2O_3$ with $247.6868m^2/g$ surface area and $37.7821{\AA}$ the mean of pore diameter. According to the TGA measurements, the thermal stability of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was enhanced by inserting $SiO_2{\cdot}B_2O_3$. SEM observation showed that the size of dispersed $SiO_2{\cdot}B_2O_3$ in the PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was about $1{\mu}m$. The increasing of $SiO_2{\cdot}B_2O_3$ content in PDMS leaded the following results in the gas permeation experiment: the permeability of both $H_2$ and $N_2$ was increased, and the permeability of $H_2$ was higher than $N_2$, but the selectivity($H_2/N_2$) was decreased.

Hydrocarbon Gas Permeation Characteristics of PTMSP/LDH Composite Membranes (PTMSP/LDH 복합막의 탄화수소 기체투과 특성)

  • Jeong, Yeon-Eim;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.423-430
    • /
    • 2014
  • PTMSP/LDH composite membranes were prepared by adding 0, 1, 3, and 5 wt% LDH contents to PTMSP. The gas permeability and selectivity for $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$ were investigated as a function of LDH content. As LDH content of PTMSP/LDH composite membranes increased to 5 wt%, the gas permeability for $H_2$ and $N_2$ gradually decreased, while $n-C_4H_{10}$ permeability rapidly increased. The gas permeability for $CH_4$ and $C_3H_8$ was found to decrease for the membranes with LDH content range of 0~3 wt%, however increase in the range of 3~5 wt%. As LDH content of PTMSP/LDH composite membranes increased to 5 wt%, the selectivity of membranes gradually increased for $H_2$, $N_2$, $CH_4$, $C_3H_8$, $n-C_4H_{10}$ over $H_2$, $N_2$. However the selectivity for $C_3H_8$ and $n-C_4H_{10}$ over $CH_4$ increased in the range of LDH content 0~3 wt% but decreased in the range of 3~5 wt%. The $CH_4$ and $n-C_4H_{10}$ selectivity over $H_2$ and $N_2$ increased as $CH_4$ and $n-C_4H_{10}$ permeability increased. The $n-C_4H_{10}$ selectivity over $CH_4$ increased with increasing $n-C_4H_{10}$ permeability up to 182,000 barrer and decreased above 182,000 barrer of $n-C_4H_{10}$ permeability. The $C_3H_8$ selectivity over $H_2$ and $N_2$ was found to decrease as the $C_3H_8$ permeability increased from 46,000 to 50,000 barrer, but to increase with increasing permeability from 50,000 to 52,300 barrer and decrease again with increasing permeability from 52,300 to 60,000 barrer. The $C_3H_8$ selectivity over $CH_4$ was found to decrease with increasing $C_3H_8$ permeability up to 52,300 barrer but increase above 52,300 barrer.