• Title/Summary/Keyword: permeability model

Search Result 580, Processing Time 0.031 seconds

An Energy Budget Algorithm for a Snowpack-Snowmelt Calculation (스노우팩-융설 계산을 위한 에너지수지 알고리즘)

  • Lee, Jeong-Hoon;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.82-89
    • /
    • 2011
  • Understanding snowmelt movement to the watershed is crucial for both climate change and hydrological studies because the snowmelt is a significant component of groundwater and surface runoff in temperature area. In this work, a new energy balance budget algorithm has been developed for melting snow from a snowpack at the Central Sierra Snow Laboratory (CSSL) in California, US. Using two sets of experiments, artificial rain-on-snow experiments and observations of diel variations, carried out in the winter of 2002 and 2003, we investigate how to calculate the amount of snowmelt from the snowpack using radiation energy and air temperature. To address the effect of air temperature, we calculate the integrated daily solar radiation energy input, and the integrated discharge of snowmelt under the snowpack and the energy required to generate such an amount of meltwater. The difference between the two is the excess (or deficit) energy input and we compare this energy to the average daily temperature. The resulting empirical relationship is used to calculate the instantaneous snowmelt rate in the model used by Lee et al. (2008a; 2010), in addition to the net-short radiation. If for a given 10 minute interval, the energy obtained by the melt calculation is negative, then no melt is generated. The input energy from the sun is considered to be used to increase the temperature of the snowpack. Positive energy is used for melting snow for the 10-minute interval. Using this energy budget algorithm, we optimize the intrinsic permeability of the snowpack for the two sets of experiments using one-dimensional water percolation model, which are $52.5{\times}10^{-10}m^2$ and $75{\times}10^{-10}m^2$ for the artificial rain-on-snow experiments and observations of diel variation, respectively.

Solidification Process of a Binary Mixture with Anisotropy of the Mushy Region (머시영역의 비등방성을 고려한 2성분혼합물의 응고과정)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.162-171
    • /
    • 1993
  • This paper deals with the anisotropy of the mushy region during solidification process of a binary mixture. A theoretical model which specifies a permeability tensor in terms of pricipal values is proposed. Also, the governing equations are modified into convenient forms for the numerical analysis with the existing algorithm. Some test computations are performed for soeidification of aqueous ammonium chloride solution contained in a square cavity. Results show that not only the present model is capable of resolving fundamental characteristics of the tranport phenomena, but also the anisotropy significantly affects the interdendritic flow structure, i.e., double-diffusive convection and macrosegregation patterns.

The Experimental study on the Anti-inflammatory and Analgesic Effects of Gold injection Aqua-acupuncture (금주사액약침자극(金注射液藥鍼刺戟)의 항염증(抗炎症) 및 진통(鎭痛)에 관한 실험적(實驗的) 연구(硏究))

  • Hong, Seong-Hun;Choi, Do-young
    • Journal of Acupuncture Research
    • /
    • v.18 no.2
    • /
    • pp.200-213
    • /
    • 2001
  • Objectives : This study was purposed to investigate the Anti-inflammatory and Analgesic Effects of Gold injection Aqua-acupuncture on the experimental model of rheumatoid arthritis. Methods : The experimental groups were divided into 4 groups : Control group (group injected with normal saline), J-NS (group injected with normal saline into bilateral Choksamni(ST36)), J-GS (group injected with Gold Injection into bilateral Choksamni(ST36)), and N-GS (injected with Gold Injection into the blank locus of the root of mouse tail). In addition, Diclofenac-Na as a comparative medicine is injected into bilateral Choksamni(ST36) and the blank locus of the root of mouse tail. So we measured the mice paw edema induced by Carrageenin and Dextran, the chronic rat paw edema induced by adjuvant, vascular permeability induced by Acetic acid in mice, the writhing syndrome induced by Acetic acid in mice, the heat-induced pain threshold in mice. Results : The following result have been obtained. 1. The mice paw edema induced by Carrageenin was significantly decreased in J-GS as compared with the control group. 2. The mice paw edema induced by Dextran was significantly decreased in J-GS and N-GS as compared with the control group. 3. The chronic rat paw edema induced by Adjuvant was significantly decreased in J-GS and N-GS as compared with the control group. Serum Iron content was significantly decreased in J-GS and N-GS as compared with the control group. But the effect on the Serum Copper contents has no significance statistically. 4. Vascular permeability induced by Acetic acid in mice was significantly decreased in J-GS and N-GS as compared with the control group. 5. The level of Acetic acid-induced Writhing syndrome and Heat-induced Pain Threshold in mice were all significantly decreased in J-GS and N-GS as compared with the control group. Conclusion : According to the result, gold injection aqua-acupuncture has significant anti-inflammatory and analgesic effects on the experimental model of rheumatiod arthiritis.

  • PDF

An evaluation of a crushed stone filter and gabion retaining wall for reducing internal erosion of agricultural reservoirs

  • Lee, Young-Hak;Lee, Dal-Won;Ryu, Jung-Hyun;Kim, Cheol-Han;Heo, Joon;Shim, Jae-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.485-496
    • /
    • 2020
  • Recent changes in the disaster environment have greatly increased the possibility of internal erosion in deteriorated reservoirs; thus, countermeasure methods are required to enhance the drainage performance of embankments. Sand filters have been mainly used to prevent internal erosion; however, due to the sand depletion and environmental problems, new alternative materials are required to replace the sand in the filter zone. In this study, crushed stone was used instead of sand as a material that could satisfy permeability, material supply, demanding conditions, and economic efficiency. Although crushed stone has excellent drainage performance, it has a clogging phenomenon due to its high permeability. Accordingly, the materials need to be separated with a geotextile wrapping method. Additionally, the 3D numerical analysis and a large model experiment were conducted to evaluate the seepage characteristics and in-site application of the crushed stone filter. As a result, the crushed stone filter showed an excellent dispersion effect by reducing the pore water pressure by about 9.5 times that of the sand filter. In addition, it was shown that the safety factor for piping increased significantly by reducing internal erosion. When comparing the economics and supply and demand conditions of the material, crushed stone was evaluated as an effective method to reduce the internal erosion of embankments at deteriorated reservoirs.

Improvement of antithrombotic activity of red ginseng extract by nanoencapsulation using chitosan and antithrombotic cross-linkers: polyglutamic acid and fucoidan

  • Kim, Eun Suh;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.236-245
    • /
    • 2021
  • Background: Red ginseng (RG) extract, especially ginsenoside Rg1 and Rb1 fractions has been reported to have antithrombotic activities. However, gastric instability and low intestinal permeability are considered to be obstacles to its oral administration. We hypothesized that stability, permeability, and activities of RG might be improved by encapsulation within nanoparticles (NPs) prepared with antithrombotic coating materials. Methods: RG-loaded chitosan (CS) NPs (PF-NPs) were prepared by complex ionic gelation with the antithrombotic wall materials, polyglutamic acid (PGA), and fucoidan (Fu). The concentrations of PGA (mg/mL, X1) and Fu (mg/mL, X2) were optimized for the smallest particle size by response surface methodology. Antithrombotic activities of RG and PF-NPs were analyzed using ex vivo and in vivo antiplatelet activities, in vivo carrageenan-induced mouse tail, and arteriovenous shunt rat thrombosis models. Results: In accordance with a quadratic regression model, the smallest PF-NPs (286 ± 36.6 nm) were fabricated at 0.628 mg/mL PGA and 0.081 mg/mL Fu. The inhibitory activities of RG on ex vivo and in vivo platelet aggregation and thrombosis in in vivo arteriovenous shunt significantly (p < 0.05) increased to approximately 66.82%, 35.42%, and 38.95%, respectively, by encapsulation within PF-NPs. For an in vivo carrageenan-induced mouse tail thrombosis model, though RG had a weaker inhibitory effect, PF-NPs reduced thrombus significantly due to the presence of PGA and Fu. Conclusion: PF-NPs contributed to improve the activities of RG not only by nanoencapsulation but also by antithrombotic coating materials. Therefore, PG-NPs can be suggested as an efficient delivery system for oral administration of RG.

Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow

  • Jin, Hyunwoo;Go, Gyu-Hyun;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-445
    • /
    • 2021
  • Artificial ground freezing (AGF) is a commonly used geotechnical support technique that can be applied in any soil type and has low environmental impact. Experimental and numerical investigations have been conducted to optimize AGF for application in diverse scenarios. Precise simulation of groundwater flow is crucial to improving the reliability these investigations' results. Previous experimental research has mostly considered horizontal seepage flow, which does not allow accurate calculation of the groundwater flow velocity due to spatial variation of the piezometric head. This study adopted vertical seepage flow-which can maintain a constant cross-sectional area-to eliminate the limitations of using horizontal seepage flow. The closure time is a measure of the time taken for an impermeable layer to begin to form, this being the time for a frozen soil-ice wall to start forming adjacent to the freeze pipes; this is of great importance to applied AGF. This study reports verification of the reliability of our experimental apparatus and measurement system using only water, because temperature data could be measured while freezing was observed visually. Subsequent experimental AFG tests with saturated sandy soil were also performed. From the experimental results, a method of estimating closure time is proposed using the inflection point in the thermal conductivity difference between pore water and pore ice. It is expected that this estimation method will be highly applicable in the field. A further parametric study assessed factors influencing the closure time using a two-dimensional coupled thermo-hydraulic numerical analysis model that can simulate the AGF of saturated sandy soil considering groundwater flow. It shows that the closure time is affected by factors such as hydraulic gradient, unfrozen permeability, particle thermal conductivity, and freezing temperature. Among these factors, changes in the unfrozen permeability and particle thermal conductivity have less effect on the formation of frozen soil-ice walls when the freezing temperature is sufficiently low.

Behaviour of the Excess Pore Pressure Induced by Sand Mat on the Soft Clay (점토지반 샌드매트의 간극수압 거동)

  • Kim, Hyeong-Joo;Lee, Min-Sun;Paek, Pil-Soon;Jeon, Hye-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.55-62
    • /
    • 2006
  • The design of sand mat should be reviewed by the behaviour of excess pore pressure which is obtained by combining characteristics of soft ground with the permeability of sand mat. In this paper, in order to investigate the distribution of hydraulic gradient of sand mat, a banking model test was performed using dredged sand as materials of sand mat, and these results were compared by the numerical analysis results utilizing Terzaghi's consolidation equation. The results show that the pore pressure was influenced by the settlement increasing in the central area of sand mat as the height of embankment increases, and uprising speed of excess pore pressure due to residing water pressure is delayed compared with the results of numerical analysis. Finally, the construction of sand mat should be spreaded to reduce the increased hydraulic gradient at the central area of embankment.

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

Characteristics Analysis of Mudstone Weathered Soils in the landslide Area using Statistical Technique (통계기법에 의한 산사태발생지역 이암 풍화토층의 토질특성 분석)

  • Hwang, Eui-Soon;Chung, Dae-Seouk;Kim, Kyeong-Su;Lee, Moon-Se;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.31-41
    • /
    • 2013
  • In this study, the properties of mudstone weathered soils related to landslides were analyzed at the area of landslide induced by heavy rainfall in Pohang. The soil tests were carried out to the soils obtained from landslide and non landslide sites, and the soil properties were investigated. The correlation between soil properties and landslides were analyzed using statistical technique, and then the soil factors were extracted from the correlation analysis. The correlation equation which can calculate the coefficient of permeability influenced on landslides was proposed using the soil factors. As the result of analysis, the porosity and unit weight of soils from the landslide area is smaller than those of soils from the non landslide area. The soils with poor grain size distribution and loose unit weight are prone to landslides because the soils have a large void ratio and a low unit weight. The permeability of soils from the landslide area is larger than that of soils from the non landslide area. According to the result of correlation analysis, the effective grain size, the saturated unit weight and silt and clay contents are evaluated as the influence factors. These factors were considered to estimate the coefficient of permeability of mudstone weathered soils.

Prediction of Soil-water Characteristic Curve and Unsaturated Permeability Coefficient of Reclaimed Ground (불포화 준설매립 지반의 흙-수분 특성곡선 및 불포화 투수계수 예측)

  • 신은철;이학주;오영인
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.109-120
    • /
    • 2004
  • There has been outstanding research on the soil-water characteristic curves of unsaturated soils over the past several decades. Unfortunately, unsaturated soil mechanics has not been considered as an important factor in Korea. In this paper, laboratory test and numerical analysis(SoilVision Professional ver 3.04) were performed to investigate the prediction method of soil-water characteristic curve and unsaturated permeability coefficient in reclaimed ground. The pressure cell, desiccator, and tensiometor tests were conducted on three types of reclaimed soils(dredged soil, sand, weathered granite soil). Numerical analysis was executed to compare the results with the laboratory test results and also compared with the results of each prediction method. Based on the laboratory test, three different types of soils have shown different soil-water characteristic curves. The hysteresis fir these soils is clearly defined. As a result of numerical analysis, Fredlund & Xing's method and Fredlund & Wilson's model proved to worke out well for reclaimed ground soils in Korea. Also, predicting method based on the soil-water characteristic curves from the particle-size distributions is flirty reliable for estimating unsaturated permeability coefficient.