• 제목/요약/키워드: permanganate

검색결과 105건 처리시간 0.025초

Spectrophotometric and Kinetic Determination of Some Sulphur Containing Drugs in Bulk and Drug Formulations

  • Walash, M.I.;El-Brashy, A.M.;Metwally, M.S.;Abdelal, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.517-524
    • /
    • 2004
  • Two simple and sensitive spectrophotometric methods were developed for the determination of carbocisteine, penicillamine, ethionamide and thioctic acid in bulk and in their pharmaceutical preparations using alkaline potassium permanganate as an oxidizing agent. The first one involves determination of ethionamide and thioctic acid by spectrophotometric investigation of the oxidation reaction of the two drugs. The second method involves determination of carbocisteine and penicillamine by kinetic studies of the oxidation reaction of these two drugs at room temperature for a fixed time of 20 minutes. The absorbance of the colored manganate ions was measured at 610 nm in both methods. 1-10 ${\mu}$g/mL of ethionamide and thioctic acid could be etermined by the spectrophotometric method with detection limits of 0.11 and 0.089 ${\mu}$g/mL for the two drugs respectively. 2-10 ${\mu}$g/mL of carbocisteine and penicillamine could be determined by the kinetic method with detection limits of 0.14 and 0.21 ${\mu}$g/mL respectively. The two methods were successfully applied for the determination of these drugs in their dosage forms.

Abiotic Degradation Degradation of the Herbicide Oxadiazon in Water

  • Rahman Md. Mokhlesur;Park, Jong-Woo;Park, Man;Rhee In-Koo;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • 제49권4호
    • /
    • pp.157-161
    • /
    • 2006
  • The performance of abiotic degradation of oxadiazon was investigated by applying zerovalent iron(ZVI), potassium permanganate($KMnO_4$) and titanium dioxide($TiO_2$) in the contaminated water. Experimental conditions allowed the disappearance of oxadiazon in the abiotic system. The degradation of this herbicide was monitored in buffer solutions having pH 3, 5 and 7 in the presence of iron powder in which the maximum degradation rate was achieved at acidic condition(pH 3) by 2% of ZVI treatment. The oxidative degradation of oxadiazon was observed in aqueous solution by $KMnO_4$ at pH 3, 7 and 10 in which the highest disappearance rate was found at neutral pH when treated with 2% of $KMnO_4$. The catalytic degradation of oxadiazon in $TiO_2$ suspension was obtained under dark and UV irradiation conditions. UV irradiation enhanced the degradation of oxadiazon in aquatic system in the presence of $TiO_2$. Conclusively, the remediation strategy using these abiotic reagents could be applied to remove oxadiazon from the contaminated water.

저니켈 스테인리스강의 화학적 부동태막 형성에 산화제가 미치는 영향 (Study on the Effects of Oxidant on Chemical Passivation Treatment of Low Nickel Stainless Steel)

  • 최종범;이경황;윤용섭
    • 한국표면공학회지
    • /
    • 제51권3호
    • /
    • pp.172-178
    • /
    • 2018
  • In this paper, effects of potassium permanganate, pottasium dichromate, sodium molybdate on lean duplex stainless steel were studied by GDOES, OCP, potentiodynamic curves. The stainless steels were chemically passivated in each nitric acid solutions containing 4wt.% oxidants for 1 hour. As a result, when potassium dichromate or sodium molybdate was added, content of Fe was decreased and content of Cr was increased. Consequently, corrosion resistance of passive film was increased. But in case of potassium permanganate was added, contrastively, content of Fe was increased and content of Cr was decreased. So corrosion resistance was decreased. Adding sodium molybdate in nitric acid for chemical surface treatment process was the most effective among oxidants and also it showed the most stable anti-corrosion in SST.

마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발 (Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys)

  • 이동욱;김영훈;문명준
    • Corrosion Science and Technology
    • /
    • 제17권1호
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가 (Characteristics of Films Formed on AZ31B Magnesium Alloy by Chemical Oxidation Process in Potassium Permanganate Solution)

  • 김민정;김형찬;윤석영;정우창
    • 한국표면공학회지
    • /
    • 제44권2호
    • /
    • pp.44-49
    • /
    • 2011
  • The films formed on AZ31B magnesium alloy were prepared from alkaline solution composed of potassium permanganate and sodium hydroxide. The immersion tests were carried out at the different concentration of sodium hydroxide and pre-treatment method in 5 minute. The morphology and the phase composition of the film were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the film in 5.0% NaCl solution was evaluated using potentiodyanmic polarization. Open circuit potential in developing film was examined with time. The thin and transparent film was mainly composed of MgO and $Mg(OH)_2$. The film with the best corrosion resistance was obtained at $70^{\circ}C$ bath temperature, 1.6 M concentration of sodium hydroxide and chemical pre-treatment.

비크롬계 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 산처리에 따른 화성 피막의 특성 평가 (Characteristics Evaluation of Conversion Coating of Acid Pickling AZ31 Magnesium Alloy by a Chromium-Free Phosphate-Permanganate Solution)

  • 김명환;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제43권2호
    • /
    • pp.73-79
    • /
    • 2010
  • A chromium-free conversion coating for AZ31 magnesium alloy has been obtained by using a permanganatephosphate solution, which has been developed with acid pickling. Examination have been carried out on the conversion coatings for morphology, composition and corrosion resistance. The morphology of the conversion-coated layer was observed using optical microscope and SEM. It was shown that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to 2.7 ${\mu}m$. The chemical composition of conversion coating was mainly consisted of Mg, O, P, K, Al and Mn by EDS analysis. It was found that the corrosion resistance of the AZ31 magnesium alloy has been improved by the permanganate-phosphate conversion treatment from electrochemical polarization.

마이크로 아크 산화처리된 마그네슘 합금의 부식특성에 미치는 과망간산칼륨의 영향 (Effect of Potassium Permanganate on Corrosion Behavior of Magnesium Alloy Prepared by Micro-Arc Oxidation)

  • 고영건;이강민;신기룡;신동혁
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.724-729
    • /
    • 2010
  • The effect of potassium permanganate ($KMnO_4$) in an electrolyte on the corrosion performance of magnesium alloy coated by micro-arc oxidation (MAO) has been investigated in this study. For this purpose, MAO coating was carried out on the present sample under AC condition in an alkaline silicate electrolyte with and without $KMnO_4$. Irrespective of the addition of $KMnO_4$, it was found from structural observation that the ceramic coating layers consisted of inner and outer layers. In the sample processed in the electrolyte with $KMnO_4$, the outer layer became dense and even contained a number of $Mn_2O_3$ atoms, resulting in high corrosion resistance. Based on the results of a potentiodynamic polarization test, it was confirmed that the coating layer formed in the electrolyte with $KMnO_4$exhibited better corrosion resistance than that without $KMnO_4$. The high corrosion resistance of the MAO-treated magnesium alloy was explained in relation to the equivalent circuit model.

국내 담수퇴적물의 CODsed 분석방법 평가: CODMn법과 CODCr법의 신뢰성 및 상관성 비교 (Evaluation of CODsed Analytical Methods for Domestic Freshwater Sediments: Comparison of Reliability and Correlationship between CODMn and CODCr Methods)

  • 최지연;오상화;박정훈;황인성;오정은;허진;신현상;허인애;김영훈;신원식
    • 한국환경과학회지
    • /
    • 제23권2호
    • /
    • pp.181-192
    • /
    • 2014
  • In Korea, the chemical oxygen demand($COD_{sed}$) in freshwater sediments has been measured by the potassium permanganate method used for marine sediment because of the absence of authorized analytical method. However, this method has not been fully verified for the freshwater sediment. Therefore, the use or modification of the potassium permanganate method or the development of the new $COD_{sed}$ analytical method may be necessary. In this study, two modified $COD_{sed}$ analytical methods such as the modified potassium permanganate method for $COD_{Mn}$ and the modified closed reflux method using potassium dichromate for $COD_{Cr}$ were compared. In the preliminary experiment to estimate the capability of the two oxidants for glucose oxidation, $COD_{Mn}$ and $COD_{Cr}$ were about 70% and 100% of theoretical oxygen demand(ThOD), respectively, indicating that $COD_{Cr}$ was very close to the ThOD. The effective titration ranges in $COD_{Mn}$ and $COD_{Cr}$ were 3.2 to 7.5 mL and 1.0 to 5.0 mL for glucose, 4.3 to 7.5 mL and 1.4 to 4.3 mL for lake sediment, and 2.5 to 5.8 mL and 3.6 to 4.5 mL for river sediment, respectively, within 10% errors. For estimating $COD_{sed}$ recovery(%) in glucose-spiked sediment after aging for 1 day, the mass balances of the $COD_{Mn}$ and $COD_{Cr}$ among glucose, sediments and glucose-spiked sediments were compared. The recoveries of $COD_{Mn}$ and $COD_{Cr}$ were 78% and 78% in glucose-spiked river sediments, 91% and 86% in glucose-spiked lake sediments, 97% and 104% in glucose-spiked sand, and 134% and 107% in glucose-spiked clay, respectively. In conclusion, both methods have high confidence levels in terms of analytical methodology but show significant different $COD_{sed}$ concentrations due to difference in the oxidation powers of the oxidants.

과망간산칼륨, 안정화이산화염소, 포르말린, 황산동이 넙치(Paralichthys olivaceus) 적혈구에 미치는 시험관내 용혈작용 및 메트헤모글로빈 생성 효과 (In Vitro Hemolysis and Methemoglobin Formation in Olive Flounder (Paralichthys olivaceus) Erythrocytes Induced by Potassium Permanganate, Stabilized Chlorine Dioxide, Formalin and Copper Sulphate)

  • 정승희;김진우
    • 한국어병학회지
    • /
    • 제18권2호
    • /
    • pp.179-185
    • /
    • 2005
  • 과망간산칼륨 ($KMnO_4$), 안정화이산화염소 ($S-ClO_2$, 3% 수용액), 포르말린 (37% formaldehyde), 황산동 ($CuSO_4$)을 이용하여 넙치 적혈구의 cell damage에 미치는 효과를 알아보고자 in vitro 용혈작용과 methemoglobin (MetHb) 생성을 조사하였다. 실험의 농도는 과망간산칼륨 2-250 ppm, 안정화이산화염소 3.13-400 ppm, 포르말린 31.3-2,000 ppm, 황산동 0.04-5 ppm 이었다. 과망간산칼륨은 31.3-250 ppm, 황산동은 0.63 -5 ppm에서 현저한 용혈작용을 나타내었으나 이와는 반대로 MetHb 생성은 전혀 없었다. 따라서 과망간산칼륨과 황산동은 넙치 적혈구에 대한 cell damage system이 매우 유사한 것으로 생각되었다. 안정화이산화염소의 경우, 용혈작용은 25 ppm 이상의 농도에서 그리고 MetHb 생성은 6.25 ppm 이상의 농도에서 높게 증가하였다. 본 실험에서 유일하게 용혈작용과 MetHb 생성을 양쪽 다 현저하게 나타내었다. 포르말린은 2,000 ppm의 고농도에서도 용혈작용은 없었으며, MetHb 생성은 250-2,000 ppm에서 완만하게 증가하였다. 따라서 안정화이산화염소와 포르말린은 넙치 적혈구에 대하여 과망간산칼륨 및 황산동과는 또 다른 cell damage system을 가지고 있는 것으로 나타났다.

In-Situ Spectroelectrochemical Studies of Manganese(II) Oxidation

  • Zhang, Haiyan;Park, Su-Moon
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.569-574
    • /
    • 1995
  • In-situ spectroelectrochemical studies have been carried out on the oxidation of Mn(II) at platinum, gold, lead dioxide, and bismuth doped lead dioxide electrodes. The Mn(III), $MnO_2$, and/or ${MnO_4}^-$ species are produced depending on experimental conditions employed during electrolysis. Mn(III) is shown to be produced from a very early stage during the anodic potential scan and undergo disproportionation-conproportionation reactions depending on the relative concentration of each species near the electrode surface. An oxidation mechanism consistent with these observations is proposed.

  • PDF