• Title/Summary/Keyword: permanent magnet filter

Search Result 77, Processing Time 0.028 seconds

Reduced-Order Unscented Kalman Filter for Sensorless Control of Permanent-Magnet Synchronous Motor

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.683-688
    • /
    • 2017
  • The unscented Kalman filter features a direct transforming process involving unscented transformation for removing the linearization process error that may occur in the extended Kalman filter. This paper proposes a reduced-order unscented Kalman filter for the sensorless control of a permanent magnet synchronous motor. The proposed method can reduce the computational load without degrading the accuracy compared to the conventional Kalman filters. Moreover, the proposed method can directly estimate the electrical rotor position and speed without a back-electromotive force. The proposed Kalman filter for the sensorless control of a permanent magnet synchronous motor is verified through the simulation and experimentation. The performance of the proposed method is evaluated over a wide range of operations, such as forward and reverse rotations in low and high speeds including the detuning parameters.

Parallel Reduced-Order Square-Root Unscented Kalman Filter for State Estimation of Sensorless Permanent-Magnet Synchronous Motor (센서리스 영구자석 동기전동기의 상태 추정을 위한 병렬 축소 차수 제곱근 무향 칼만 필터)

  • Moon, Cheol;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1019-1025
    • /
    • 2016
  • This paper proposes a parallel reduced-order square-root unscented Kalman filter for state estimation of a sensorless permanent-magnet synchronous motor. The appearance of an unscented Kalman filter is caused by the linearization process error between a real system and classical Kalman model. The unscented transformation can make a more accurate Kalman model. However, the complexity is its main drawback. This paper investigates the design and implementation of the proposed filter with Potter and Carlson square-root form. The proposed parallel reduced-order square-root unscented Kalman filter reduces memory and code size, and improves numerical computation. And the performance is not significantly different from the unscented Kalman filter. The experimentation is performed for the verification of the proposed filter.

Development of Moving Alternating Magnetic Filter Using Permanent Magnet for Removal of Radioactive Corrosion Product from Nuclear Power Plant

  • M. C. Song;Kim, S. I.;Lee, K. J.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.494-501
    • /
    • 2002
  • Radioactive Corrosion Products (CRUD) which are generated by the neutron activation of general corrosion products at the nuclear power plant are the major source of occupational radiation exposure. Most of the CRUD has a characteristic of showing strong ferrimagnetisms. Along with the new development and production of permanent magnet (rare earth magnet) which generates much stronger magnetic field than the conventional magnet, new type of magnetic filter that can separate CRUD efficiently and eventually reduce radiation exposure of personnel at nuclear power plant is suggested. This separator consists of inner and outer magnet assemblies, coolant channel and container surrounding the outer magnet assembly. The rotational motion of the inner and outer permanent magnet assemblies surrounding the coolant channel by driving motor system produces moving alternating magnetic fields in the coolant channel. The CRUD can be separated from the coolant by the moving alternating magnetic field. This study describes the results of preliminary experiment performed with the different flow rates of coolant and rotation velocities of magnet assemblies. This new magnetic filter shows better performance results of filtering the magnetite at coolant (water). How rates, rotating velocities of magnet assemblies and particle sizes turn out to be very important design parameters.

Sensorless Speed Control of Permanent Magnet Synchronous Motor by Unscented Kalman Filter using Various Scaling Parameters

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.347-352
    • /
    • 2016
  • This paper investigates the application, design and implementation of unscented Kalman filter observer using the various scaling parameters for the sensorless speed control of a permanent magnet synchronous motor. The principles of unscented transformation and unscented Kalman filter are examined and their applications are explained. Typically the mapping transformation process is divided into two types, namely the basic unscented transformation and the general unscented transformation by virtue of the scaling parameter value. And resultantly, the number of sampling points, weights, code configuration and computation time are different. But there is no little information on the scaling parameter value or how this value influences the system performance. To analyze the unscented transformation with the various scaling parameters in this study, the experimental results under a wide range of operation condition have been demonstrated.

Sensorless speed control of permanent magnet synchronous motor using square-root extended kalman filter (제곱근 확장 칼만 필터에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • Moon, Cheol;Kwon, Young-Ahn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.217-222
    • /
    • 2016
  • This study investigates the design, analysis, and implementation of the square-root extended Kalman filter by using an algorithm derived by combining the Potter or Carlson algorithm with the modified Gram-Schmidt algorithm, for sensorless speed control of a permanent-magnet synchronous motor. The sensitivity of the Kalman filter to round-off errors is a well-known problem. A possible way to address this limitation is by combining the square-root concept and Kalman filter that can improve the numerical performance and solve instability-related problems such as divergence. This paper presents the design and analysis of the implementation of such a square-root extended Kalman filter. To demonstrate the performance of the proposed filter, experimental results under several operating conditions, such as high and low speeds, reversal rotation, detuned parameters and load test, have been analyzed. Further, code sizes and operation times have been compared. Experimental results establish the performance of the proposed square-root extended Kalman filter-based estimation technique for sensorless speed control of a permanent-magnet synchronous motor.

Hybrid Sensor-less Control of Permanent Magnet Synchronous Motor in Low-speed Region

  • Yamamoto, Yasuhiro;Funato, Hirohito;Ogasawara, Satoshi
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.301-308
    • /
    • 2008
  • This paper proposes a method of improving the stability in sensor-less control of permanent magnet synchronous motors. The control method for low-speed region is divided into two: One is a high frequency method, which involves a problem of reverse rotation once misdetection of the permanent magnet polarity should occur, and another one is a current drive method, which has a problem that phase and speed oscillations are caused by quick speed changes. Hence, authors propose adoption of the current drive method for the basic control system with added compensation of stabilization by means of the high frequency method. This combination secures stable control with no risk of reversal and less vibration. In addition, authors have also considered a frequency separation filter of a shorter delay time so that current control performance will not lower even when high frequencies are introduced. This filter has achieved simplified compensation using repetitive characteristic through the utilization of the periodicity of high frequency current. Simulation and experiment have been conducted to verify that the stable performance of this system is improved.

On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter

  • Sim, Hyun-Woo;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.600-608
    • /
    • 2014
  • This paper presents estimation of d-axis and q-axis inductance of an interior permanent magnet synchronous motor (IPMSM) by using an extended Kalman filter (EKF). The EKF is widely used for control applications including the motor sensorless control and parameter estimation. The motor parameters can be changed by temperature and air-gap flux. In particular, the variation of the inductance affects torque characteristics like the maximum torque per ampere (MTPA) control. Therefore, by estimating the parameters, it is possible to improve the torque characteristics of the motor. The performance of the proposed estimator is verified by simulations and experimental results based on an 11kW PMSM drive system.

Stator Resistance Estimation of Permanent Magnet Synchronous Motor by using Kalman Filter (칼만 필터를 이용한 영구자석 동기 전동기의 고정자 저항값 검출 방법)

  • Hwang, Sangjin;Lee, Dongmyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • Accurate estimation of motor parameters is required in some motor control applications. For example, the value of stator resistance is required for stator flux-oriented control mostly used in doubly fed induction generator systems. Stator resistance is not a constant value and continuously changes due to the rise in temperature during motor operation. Estimation errors degrade the control performance. Hence, this study proposes a simple stator resistance estimation method. In this scheme, the differential components of voltage and current values are used to eliminate the dead-time effect, and Kalman filter algorithm is applied to reduce the error according to measurement noise. Simulation and experimental results obtained with a permanent magnet motor show the validity of the proposed algorithm.

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter

  • Wang, Shuang;Zhu, Wenju;Shi, Jian;Ji, Hua;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1547-1558
    • /
    • 2015
  • A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

Extended Kalman Filter Design for Sensorless Control of IPMSM Drive (IPMSM의 센서리스 운전을 위한 확장 칼만 필터 설계)

  • Jeon, Yong-Ho;Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1681-1690
    • /
    • 2013
  • In this paper, a design of speed and position controller based on the EKF(Extended Kalman Filter) for sensorless control in IPMSM(Interior Permanent Magnet Synchronous Motor) is proposed. The proposed method subdivides the state estimation interval for improving the accuracy of state estimation. and each subdivided interval estimated first order term using Taylor series. The proposed state estimator comparison with the second-order extended Kalman filter reduced calculation amount of a priori estimation. And the simulation results were proved that The accuracy of priori estimation is increased.