• Title/Summary/Keyword: permanent displacement

Search Result 195, Processing Time 0.029 seconds

Development of Struts for Soil Shuttering as a Permanent System (구조물 겸용 흙막이 스트러트 공법)

  • Hong Won-ki;Kim Sun-kuk;Kim Hee-Chul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.3 s.19
    • /
    • pp.71-78
    • /
    • 2004
  • In conventional method of supporting soil shuttering wall during excavation a system of struts and wales to provide cross-lot bracing is common in trench excavations and other excavations of limited width. This method, however, becomes difficult and costly to be adopted for large excavations since heavily braced structural systems are required. Another expensive and unsafe situations are expected when temporary struts must be removed for the construction of underground structures. This paper introduces innovative strut systems which can be used as permanent underground structures after its role as brace system to resist earth pressure during excavation phase. Underground structural system suggested from architect is checked against the soil lated pressures before the analysis of stresses developed from gravity loads. In this technology, named SPS(Struts as Permanent System), retaining wall is installed first and excavation proceeds until the first level of bracing is reached. Braces used as struts during excavation will serve as permanent girders when buildings are in operation. Simultaneous construction of underground and superstructure can proceeds when excavation ends with the last level of braces being installed. In this paper, construction sequence and the calculation concept are explained in detail with some photo illustrations. SPS technology was applied to three selected buildings. One of them was completed and two others are being constructed Many sensors were installed to monitor the behavior of retaining wall, braces as column in terms of stress change and displacement. Adjacent ground movement was also obtained. These projects demonstrate that SPS technology contributes to the speed as well as the economy involved in construction.

An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)

  • Ghanbari, Ali;Khalilpasha, Abbas;Sabermahani, Mohsen;Heydari, Babak
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.143-164
    • /
    • 2013
  • Calculation of seismic displacements in reinforced slopes plays a crucial role in appropriate design of these structures however current analytical methods result indifferent values for permanent displacements of the slope. In this paper, based on limit equilibrium and using the horizontal slices method, a new formulation has been proposed for estimating the seismic displacements of a reinforced slope under earthquake records. In this method, failure wedge is divided into a number of horizontal slices. Assuming linear variations for tensile forces of reinforcements along the height of the slope, the coefficient of yield acceleration has been estimated. The simplicity of calculations and taking into account the frequency content of input triggers are among the advantages of the present formulation. Comparison of the results shows that the yield acceleration calculated by the suggested method is very close to the values resulted from other techniques. On the other hand, while there is a significant difference between permanent displacements, the values obtained from the suggested method place somehow between those calculated by the other techniques.

Dynamic Behavior of Vacuum Circuit Breaker with Permanent Magnetic Actuator (영구자석형 조작기를 갖는 진공차단기의 동적거동)

  • Yu, Lyun;Kim, Young-Geun;Lee, Sung-Ho;Cho, Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.578-585
    • /
    • 2007
  • A vacuum circuit breaker (VCB) with permanent magnet actuator (PMA) has been studied in this study. Electromagnetic field analysis and dynamic simulations have been carried out for optimal design of VCB by using commercial software Maxwell and ADAMS. This simulation model can be an effective method for the VCB, which has non-linear output force of PMA, friction, and impact for operations. An experiment has been conducted to evaluate correctness of the simulated model. By using this evaluated model, the displacement and velocity characteristics of the VCB have been simulated with following conditions : (1) The different output forces of PMA have been applied, (2) The friction conditions in follow lever shaft and moving part have been changed, (3) The mass conditions of moving part have been changed. The simulated results shows that the velocity characteristics are mainly determined by the output force of PMA. The effects due to the changes of friction conditions against the dynamic characteristics was small, and the mass conditions of the moving parts affect the velocity and a bouncing phenomenon of VCB. From these results, the optimal design conditions for the VCB have been derived.

Design of an Electromagnetically-driven Micromirror Through the Coupled Physics Analyses (복합장 해석에 의한 전자력 구동방식의 마이크로미러 설계)

  • Han, Seung-Oh;Kim, Byoung-Min;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.380-384
    • /
    • 2010
  • A micromirror for a laser display system actuated by the electromagnetic force induced by the surface coil and the permanent magnet was designed and analyzed through the coupled physics analyses incorporating the electromagnetics, mechanics, and electrothermal analysis because the mechanical rotation of the micromirror is driven by the electromagnetic driving force. The proposed micromirror has two torsion beams to sustain the mirror plate which has surface coils on the top and the two permanent magnets exists on both sides of the micromirror for an external magnetic field source. The designed micromirror has the resonant frequency of 3.82kHz. When the magnetic field of the permanent magnet is 0.4T, the coil has 4 turns, and the current density of coil is 3.6A/$mm^2$, the estimated z axis displacement of the mirror plate edge is 0.23mm which corresponds to the rotation angle of $14.2^{\circ}$. When considering the joule heating in the current-carrying coil, the maximum temperature of the mirror plate is obtained as 300.045K, which induces the negligible changes in the rotation angle and the resistance of the coil.

Modeling and Position-Sensorless Control of a Dual-Airgap Axial Flux Permanent Magnet Machine for Flywheel Energy Storage Systems

  • Nguyen, Trong Duy;Beng, Gilbert Foo Hock;Tseng, King-Jet;Vilathgamuwa, Don Mahinda;Zhang, Xinan
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.758-768
    • /
    • 2012
  • This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.

Orthodontic Treatment of Inverted Maxillary Central Incisor with Labially Dilacerated Root : Case Report (순측 만곡치근을 갖는 역위 상악 중절치의 교정적 치험례)

  • Kim, Byeong-Cheon;Mun, Cheol-Hyeon
    • The Journal of the Korean dental association
    • /
    • v.42 no.2 s.417
    • /
    • pp.150-157
    • /
    • 2004
  • Inverted maxillary incisor is that maxillary incisor rotates counterclockwise direction. The cause of this 'Inverted incisor' is the injury of the deciduous predecessor transmitted to the developing permanent tooth germ or displacement of permanent tooth crown portion from unknown origin. Dilaceration, defined as a distorted root from, may result from mechanical injury during eruption period or ectopic development of tooth germ. This article presents a case of an inverted and dilacerated maxillary right central incisor. Through orthodontic traction, the dilacerated and inverted incisor was successfully moved into the proper position.

  • PDF

Ectopic Eruption of transposed mandibular lateral incisors

  • Kim, Ga-Yeong;Kim, Seon-A
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.12 no.1
    • /
    • pp.39-42
    • /
    • 2003
  • Mandibular permanent lateral incisors showing bilateral transposition and ectopic eruption were seen beside deciduous first molars in a female aged 8yr 8month. Repositioning of the ectopic lateral incisor is difficult not only because of its distal displacement and severe rotation but also because of the potential development of transposition with the erupting canine. This paper is focused on the diagnosis of the ectopic eruption and advocates treatment with active orthodontic management at the early stage of mixed dentition, before the eruption of the permanent cuspid.

  • PDF

Design and Performance Test of the Force Motor for Direct Drive-type Pneumatic Servo Valve (직동식 공압서보밸브의 Force Motor 설계 및 성능시험)

  • 이원희;김동수;박상운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.836-839
    • /
    • 2003
  • A pneumatic servo valve which is widely applied in industrial field. And It is consist of force motor, spool & sleeve and servo controller. In this study. we developed the force motor which is consume to low power for a pneumatic servo valve. We could reduce the number of turn of the solenoid by using ferromagnetic permanent magnet and took different direction of each other using one coil instead of two coil. we modeled a system consisting of various electro-mechanical subsystems. The appropriateness of the model was verified by simulation. The simulation model resolved the motion of spool, the winding current and the magnetic force. Also, we calculated the displacement and velocity of the spool, flux contour line, b vector. flux density. flux linkage, back EMF etc.

  • PDF

ANALYSIS OF MAGNETIC FIELD AND DYNAMIC BEHAVIOR OF THE PERMANENT MAGNETIC ACTUATOR (자계해석을 통한 영구자석형 차단기 조작기의 동작특성 해석)

  • Kang, Jong-Ho;Park, Sang-Hoon;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.46-48
    • /
    • 2002
  • This paper formulates the principle of the permanent magnetic actuator (PMA) and its dynamic characteristic calculation. Some results of the calculation and analysis of the dynamic curves are presented. Due to its great advantages, PMA that presented recently drew great attention from engineers all over the world. We present the magnetic field and actuator using finite element method associated to parameter calculating the displacement of the moving parts and the supplying current when the actuator is DC voltage supplied or capacitor supplied. In this paper, We will do compare of dynamic behavior between DC voltage supplied and capacitor discharge supplied.

  • PDF

Electromagnetic Actuators for Drug Delivery Mini-Pump (약물 공급 미니펌프용 전자기 액츄에이터)

  • Cho, Doo-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.533-534
    • /
    • 2006
  • In this paper we propose a new model of a mini-pump with peristaltic motion and present the results of the finite element analysis of an electromagnetic micro actuator. The mini-pump consists of three diaphrams made of PDMS, three permanent magnets in cylinders, printed copper coils on glass substrates, and input and output port. The size of the mini-pump is $14\;{\times}\;40\;{\times}\;5.4$ mm3 and the permanent magnet diameter 6.2 mm $\times$ thickness 2 mm. The electromagnetic force applied on the magnet was about 0.84 N when the current of coils was 1 A, then the maximum displacement of the PDMS diaphram was about 2mm.

  • PDF