• Title/Summary/Keyword: peritectic

Search Result 38, Processing Time 0.019 seconds

A Similarity Solution for the Directional Casting of Peritectic Alloys in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 포정합금의 방향성주조에 대한 상사해)

  • Yu, Ho-Seon;Jeong, Jae-Dong;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.485-495
    • /
    • 2001
  • This paper presents a similarity solution for the directional casting of binary peritectic alloys in the presence of shrinkage-induced flow. The present model retains essential ingredients of alloy solidification, such as temperature-solute coupling, macrosegregation, solid-liquid property differences, and finite back diffusion in the primary phase. An algorithm for simultaneously determining the peritectic and liquidus positions is newly developed, which proves to be more efficient and stable than the existing scheme. Sample calculations are performed for both hypo- and hyper-peritectic compositions. The results show that the present analysis is capable of properly resolving the solidification characteristics of peritectic alloys so that it can be used for validating numerical models as a test solution.

Effect of Convection on the Solidification Microstructure of Hyper-Peritectic Systems (과포정계 합금의 응고조직에 미치는 대류의 영향)

  • Park, Byeong-Gyu;Kim, Mu-Geun;Park, Jang-Sik;Kim, Geun-O;Choe, Jae-Gwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.958-966
    • /
    • 2001
  • This study has examined the microstructural development in the Bridgman type directional solidification of hyper-peritectic Sn-Cd alloys, and the temperature and flow field have been numerically simulated to see if there is any change induced by convection. The directional solidification experiments carried out in quartz tubes with inside diameters of 0.4∼6mm showed that the resulting microstructures are clearly dependent on the size of tube diameters. The bigger ampoules where the effect of convection is highly expected produced saw-like structures resulting from the primary $\alpha$ and peritectic $\beta$ phase growing together at a planar solid-liquid front, with the former being surrounded by the latter. In the smaller ampoules, where the effect of convection is expected low however, the saw structure disappears, and as is understood from the theoretical prediction based on diffusion-controlled solidification the initial growth of the primary $\alpha$ phase is replaced by the nucleation of the peritectic $\beta$ phase whose growth continues to the end of the solidification.

The Grain Growth Mechanism of Sm123 Superconductor in Melt-Textured Growth Method (용융-응고법으로 제조된 Sm123 초전도체의 결정성장 기구)

  • 한상철;성태현;한영희;이준성;김상준
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.9-12
    • /
    • 2001
  • The microstructure evolution and the peritectic solidification of Sm$Ba_{2}$$Cu_{3}$ $O_{7-\delta}$ superconducting materials during the isothermal annealing were studied over the temperature range 1030-$1060^{\circ}C$ The faceted growth of the peritectic phase and its dependence upon Sm-diffusion in the liquid phase are discussed. A growth model is proposed to explain the growth shape of Sm123 crystals.

  • PDF

The effect of carbon content on hot cracking of low carbon steel weld (저탄소성 용접금속의 응고균열에 미치는 탄소함량의 영향)

  • ;;Masumoto, I.
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.16-26
    • /
    • 1988
  • The effect of carbon content on hot cracking of welded carbon steel was investigated Eight steel plates whose carbon content range from 0.02 to 0.23 percent were welded by autogeous gas tungsten are process. Constant strain was applied to the hot crack test specimen under the strain rate of 0.15 mm per second during welding. The hot cracking susceptibility ws high in the rnage of 0.02-0.05 and 0.12-0.23 percent carbon contents. The critical carbon content immune to hot cracking is in the range from 0.07 to 0.12 percent carbon. By electron probe microanalyser, amanganese segregation was not seen significantly in the whole carbon range. But segregation of silicon was higher in the region of low carbon contents. However, sulphur was segregated remarkably in the region betwen 0.18 and 0.23 percent carbon by peritectic reaction. Very smal lamount of dnedritic structure was observed in the region from 0.02 to 0.05 percent carbon by peritectic reaction. Very small amount of dendritic structure was observed in the region from 0.02 to 0.05 percent carbon but the predominant solidification structure was smooth by cellular growth. The higher the carbon content is, the more the columnar dendritic structure was observed.

  • PDF

Formation of Solidification and Eutectic Microstructures with Solidification Rates in the Single Crystal Superalloy CMSX 10 (단결정 초내열합금에서 응고속도에 따른 응고 및 공정조직의 형성 거동)

  • Lee, Je-Hyun
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.577-582
    • /
    • 2008
  • Directional solidification experiments were carried out at $1-300\;{\mu}m/sec$ solidification rates in the single crystal superalloy, CMSX 10. The solid/liquid interface morphology changed from planar to dendritic, and the dendrite spacing became finer as the solidification rate increased. The pool size of the ${\gamma}/{\gamma}'$ eutectic, formed between dendrites, reduced as the solidification rate increased. The phase formation temperatures, such as the solidus, liquidus and eutectic, were estimated by differential scanning calorimetry (DSC) analysis. The morphology of the ${\gamma}/{\gamma}'$ phase, known to be eutectic, showed ${\gamma}'$ cells with a $\gamma$ intercellular network, and this ${\gamma}/{\gamma}'$ was composed of coarse and fine ${\gamma}/{\gamma}'$ regions. In this study, it is suggested that the ${\gamma}/{\gamma}'$ phase was a coupled peritectic.The solidification procedure of the ${\gamma}/{\gamma}'$ between dendrites is also discussed.

Crystal Growth of Al-Cr and Al-Ti Peritectic Alloys by the Upward Continuous Casting Proces (상향식 연속주조법에 의한 Al-Cr 및 Al-Ti 2원계 포정합금의 결정성장)

  • Baeck, Seoung-Yil;Choi, Jong-Cheol;Shin, Hyun-Jin;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.203-209
    • /
    • 1992
  • Directional solidification of Al-Ti peritetic alloys was carried out using Upward Continuous Casting Process. The morphology of a solid-liquid interface and solidification microstructures were investigated under various crystal growing conditions. The experimental results were compared with those attained by the Bridgman method. The cell spacing of the Al-Ti peritetic alloys and the primary dendrite arm spacing of the Al-Ti peritetic alloys decreased with an increase in pulling speed. The primary ${\beta}$ phase of the Al-Cr and Al-Ti peritectic alloys did not appear in solidification microstructures because of the depleted solute contents in the melt ahead of the solid-liquid interface.

  • PDF

Investigation of γ/γ' Growth by Macro Segregation in the Ni-Base Single Crystal Superalloy, CMSX-10 (CMSX-10 단결정 초내열합금에서 거시편석에 따른 γ/γ' 응고조직 형성)

  • Yoon, Hyeyoung;Sung, Changhoon;Shin, Jongho;Han, Seong Zeon;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.435-441
    • /
    • 2015
  • The ${\gamma}/{\gamma}^{\prime}$ two-phases, commonly known as a eutectic structure, are observed in the ${\gamma}$ interdendritic region of a Ni-base superalloy. However, the growth behavior of the ${\gamma}/{\gamma}^{\prime}$ two-phases, whether it is of eutectic or peritectic nature, has not been decidedly established. Directional solidifications were, thus, performed with the planar interface at a low growth rate of $0.5{\mu}m/s$ in order to promote macro segregation. Directional solidification started with the ${\gamma}$ planar interface and the ${\gamma}^{\prime}$ phase nucleated on the ${\gamma}$ planar interface at the solidification fraction of 0.75. The ${\gamma}/{\gamma}^{\prime}$ two-phases showed the ${\gamma}^{\prime}$ rod structure as major phase and the ${\gamma}$ minor phase between ${\gamma}^{\prime}$ rods, and the volume fraction of the ${\gamma}$ phase changed continuously with an increasing solidification fraction. The two-phase ${\gamma}/{\gamma}^{\prime}$ is seen as the coupled peritectic.

Solid-liquid phase equilibria on the GdBa2Cu3O7-δ stability phase diagram in low oxygen pressures (1 - 100 mTorr)

  • Lee, J.W.;Lee, J.H.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.28-31
    • /
    • 2012
  • We report the solid-liquid phase equilibria on the $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) stability phase diagram in low oxygen pressures ($PO_2$) ranging from 1 to 100 mTorr. On the basis of the GdBCO stability phase diagram experimentally determined in low oxygen pressures, the isothermal sections of three different phase fields on log $PO_2$ vs. 1/T diagram were schematically constructed within the $Gd_2O_3-Ba_2CuO_y-Cu_2O$ ternary system, and the solid-liquid phase equilibria in each phase field were described. The invariant points on the phase boundaries include the following three reactions; a pseudobinary peritectic reaction of $GdBCO{\leftrightarrow}Gd_2O_3$ + liquid ($L_1$), a ternary peritectic reaction of $GdBCO{\leftrightarrow}Gd_2O_3+GdBa_6Cu_3O_y$ + liquid ($L_2$), and a monotectic reaction of $L_1{\leftrightarrow}GdBa_6Cu_3O_y+L_2$. A conspicuous feature of the solid-liquid phase equilibria in low $PO_2$ regime (1 - 100 mTorr) is that the GdBCO phase is decomposed into $Gd_2O_3+L_1$ or $Gd_2O_3+GdBa_6Cu_3O_y+L_2$ rather than $Gd_2BaCuO_5+L$ well-known in high $PO_2$ like air.

Phase Transitions Mechanisms of Ru Based Thick Film Resistors (Ru 계 후막저항계의 상전이 기구)

  • 강병돈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.1 no.2
    • /
    • pp.125-134
    • /
    • 1994
  • 저항범위가 다른 두종류의 Ru계 후막저항계(1Kohm/sq. 100kohm/sq.)를 선택하여 도전상의 상전이 기구를 반응조건을 변화시켜 연구하였다. 저저항체의 경우 도전상으로는 RuO2였으며 700-100$0^{\circ}C$에서 1시간 반응한 경우 반응온도에 따른 구성상의 변화는 없었다 반응온도 90$0^{\circ}C$에서 반응시간이 경과함에 따라 도전상은 RuO2가 Glass의 구성성분인 Pb와 반응하여 Rb2(Ru1.69 Pb0.31)O6.5로 변하고 시간이 36시간 경과한 후에는 도전상이 Pb4Al2Si2O10인 결정으로 둘러 쌓이는 반응인 peritectic reaction이 일어났다. 고전항체의 경 우 도전상으로는 Pb2(Ru1.69 Pb0.31)O6.5로 변하고 시간이 36시간 경과한 후에는 더전상이 Pb4Al2Si2O10인 결정으로 둘러쌓이는 반응인 peritectic reaction 이 일어났다. 고저항체의 경 우 도전상으로는 Pb2(Ru1.69 Pb0.31)O6.5인 pyrochrole 상이였다. 100$0^{\circ}C$에서 1시간 반응시킬 경 우 도전상이 RuO2로 변하였다. 반응온도를 90$0^{\circ}C$로 하고 반응시간을 변화시키면 도전상인 Pb2(Ru1.69 Pb0.31)O6.5가 (Ru1.69Pb0.31)O4x로 변하면서 공존하였다.