• Title/Summary/Keyword: peripheral antinociception

Search Result 11, Processing Time 0.022 seconds

Study on Peripheral Mechanism and Opioid Receptors Implicated in Electroacupunture-induced Inbibition of Chronic Pain (만성통증을 억제하는 전침효과의 말초성 기전과 아편양물질수용기에 관한 연구)

  • 신홍기;이서은;박동석
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.108-117
    • /
    • 2003
  • Objective : The central opioid mechanism of acupuncture analgesia has been fairly well documented in acute behavioral experiments, but little electrophysiological study has been performed on the peripheral mechanism and subtypes of opioid receptors responsible for acupuncture-induced antinociception in chronic animal models. In the present electrophysiological experiment, we studied the peripheral mechanism and opioid receptor subtypes which Were implicated in electroacupuncture-induced antinociception in the rat with chronic inflammatory and neurogenic pain. Methods : In the rat with complete Freund's adjuvant-induced inflammation and spinal nerve injury, dorsal horn cell responses to afferent C fiber stimulation were recorded before and after electroacupuncture (EA) stimulation applied to the contralateral Zusanli point for 30 minutes. Also studied Were the effects of specific opioid receptor antagonists and naloxone methiodide, which can not cross the blood-brain barrier, on EA-induced inhibitory action. Results : EA-induced inhibitory action was significantly attenuated by naloxone methiodide, suggesting that EA-induced inhibition was mediated through peripheral mechanism. Pretreatment, but not posttreatment of naltrexone and spinal application significantly blocked EA-induced inhibitory actions. In inflammatory and neurogenic pain models, ${\mu}-$ and ${\delta}-opioid$ receptor antagonists (${\beta}-funaltrexamine$ & naltrindole) significantly reduced EA-induced inhibitory action, but ${\kappa}-opioid$ receptor antagonist had weak inhibitory effect on EA-induced antinociception. Conclusion : These results suggest that 2Hz EA-stimulation induced antinoeiceptive action is mediated through peripheral as well as central mechanism, and mainly through ${\mu}-$ and ${\delta}-opioid$ receptors.

  • PDF

Effects of various receptor antagonists on the peripheral antinociceptive activity of aqueous extracts of Dicranopteris linearis, Melastoma malabathricum and Bauhinia purpurea leaves in mice

  • Zakaria, Zainul Amiruddin;Sodri, Nurul Husna;Hassan, Halmy;Anuar, Khairiyah;Abdullah, Fatimah Corazon
    • CELLMED
    • /
    • v.2 no.4
    • /
    • pp.38.1-38.6
    • /
    • 2012
  • The present study aimed to determine the possible mechanisms of the peripheral antinociception of the aqueous extracts of Dicranopteris linearis (AEDL), Melastoma malabathricum (AEMM) and Bauhinia purpurea (AEBP) leaves in mice. Briefly, the antinociceptive profile of each extract (300, 500, and 1000 mg/kg; subcutaneous (s.c.)), was established using the abdominal constriction test. A single dose (500 mg/kg) of each extract (s.c.) was pre-challenged for 10 min with various pain receptors' antagonists or pain mediators' blockers and 30 min later subjected to the antinociceptive assay to determine the possible mechanism(s) involved. Based on the results obtained, all extracts exerted significant (p < 0.05) antinociceptive activity with dose-dependent activity observed only with the AEMM. Furthermore, the antinociception of AEDL was attenuated by naloxone, atropine, yohimbine and theophylline; AEMM was reversed by yohimbine, theophylline, thioperamide, pindolol, reserpine, and 4-chloro-DL-phenylalanine methyl ester hydrochloride; and of AEBP was inhibited by naloxone, haloperidol, yohimbine and reserpine. In conclusion, the antinociceptive activity of those extracts possibly involved the activation of several pain receptors (i.e. opioids, muscarinic, ${\alpha}_2$-adrenergic and adenosine receptors, adenosine, H3-histaminergic and $5HT_{1A}$, dopaminergic receptors).

Capsaicinoids-induced Neurotoxic Desensitization in Guinea Pig: Antinociception and Loss of Substance P-like Immunoreactivity from Peripheral Sensory Nerve Endings in Bronchi

  • Jung, Yi-Sook;Lee, Buyean;Shin, Hwa-Sup;Kong, Jae-Yang;Park, No-Sang;Cho, Tai-Soon
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.256-259
    • /
    • 1995
  • Antinociceptive and desensitizing effects of systemically administered capsaicinoids (capsaicin and KR25018) were investigated in guinea pig. Nociceptive sensitivity to chemical stimulus was examined to test sensory function, and the content of substance P-like immunorractivity (SP-LI) in bronchi was determined as a peripheral marker of capsaicin-sensitive primary afferent neurons. Guinea pigs were pretreated s.c. with several doses of capsaicin (1,2.5,5, 10 mg/kg) or KR25018 (1, 2.5, 5, 10 mg/kg) one week prior to the experiments. Frequency of eye wiping was significantly decreased by capsaicin and KR25018 in a pretreatment dosedependent manner. In capsaicin- or KR25018-pretreated guinea pigs, there was a significant loss of SP-LI in bronchial tissue extracts. In summary, a newly synthesized capsaicin analogue H725018 exhibited antinociceptive effect against chemical stimulus in guinea pig, with comparable potency to capsaicin. This desensitizing activity of capsaicin or KR25018 might be related to the loss of SP-LI in peripheral afferent nerves.

  • PDF

Peripheral metabotropic glutamate receptors differentially modulate mustard oil-induced craniofacial muscle pain in lightly anesthetized rats

  • Lee, Min-K.;Yang, Gwi-Y.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.97-103
    • /
    • 2008
  • The present study investigated the role of peripheral group I, II, and III metabotropic glutamate receptors (mGluRs) in mustard oil (MO)-induced nociceptive response in the masseter muscles of lightly anesthetized rats. Experiments were carried out on male Sprague-Dawley rats weighing 300-350 gm. After initial anesthesia with sodium pentobarbital (40 mg/kg, i.p.), one femoral vein was cannulated and connected to an infusion pump for intravenous infusion of sodium pentobarbital. The rate of infusion was adjusted to provide a constant level of anesthesia. MO (30 ${\mu}L$) was injected into the mid-region of the left masseter muscle via a 30-gauge needle over 10 seconds. After 30 mL injection of 5, 10, 15, or 20% MO into the masseter muscle, total number of hindpaw-shaking behavior was monitored. Intramuscular administration of MO significantly produced hindpawshaking behavior in a dose-dependent manner, as compared with the vehicle (mineral oil)-treated group. Intramuscular pretreatment with 10 or 100 ng DHPG, a group I mGluRs agonist, enhanced MO-induced hindpaw-shaking behavior, while APDC (20 or 200 ${\mu}g$), a group II mGluRs agonist, or L-AP4 (2 ${\mu}g$), a group III mGluRs agonist, significantly reduced MO-induced nociceptive behavior. The antinociception, produced by group II or III mGluRs agonists, was abolished by pretreatment with LY341495, a group II mGluRs antagonist, or CPPG, a group III mGluRs antagonist, res-pectively. Based on these observations, peripheral mGluRs differentially modulated MO-induced nociceptive behavior response in the craniofacial muscle pain and peripheral group II and III mGluRs agonists could be used in treatment of craniofacial muscle nociception.

Evidence for the Participation of ATP-sensitive Potassium Channels in the Antinociceptive Effect of Curcumin

  • Paz-Campos, Marco Antonio De;Chavez-Pina, Aracely Evangelina;Ortiz, Mario I;Castaneda-Hernandez, Gilberto
    • The Korean Journal of Pain
    • /
    • v.25 no.4
    • /
    • pp.221-227
    • /
    • 2012
  • Background: It has been reported that curcumin, the main active compound of Curcuma longa, also known as turmeric, exhibits antinociceptive properties. The aim of this study was to examine the participation of ATP-sensitive potassium channels ($K_{ATP}$ channels) and, in particular, that of the L-arginine-nitric oxide-cyclic GMP-$K_{ATP}$ channel pathway, in the antinociceptive effect of curcumin. Methods: Pain was induced by the intraplantar injection of 1% formalin in the right hind paw of Wistar rats. Formalin-induced flinching behavior was interpreted as an expression of nociception. The antinociceptive effect of oral curcumin was explored in the presence and absence of local pretreatment with L-NAME, an inhibitor of nitric oxide synthase, ODQ, an inhibitor of soluble guanylyl cyclase, and glibenclamide, a blocker of $K_{ATP}$ channels. Results: Oral curcumin produced a dose-dependent antinociceptive effect in the 1% formalin test. Curcumin-induced antinociception was not altered by local L-NAME or ODQ, but was significantly impaired by glibenclamide. Conclusions: Our results confirm that curcumin is an effective antinociceptive agent. Curcumin-induced antinociception appears to involve the participation of $K_{ATP}$ channels at the peripheral level, as local injection of glibenclamide prevented its effect. Activation of $K_{ATP}$ channels, however, does not occur by activation of the L-arginine-nitric oxide-cGMP-$K_{ATP}$ channel pathway.

Antinociceptive Effect of Memantine and Morphine on Vincristine-induced Peripheral Neuropathy in Rats

  • Park, Byoung-Yoon;Park, Sang-Hee;Kim, Woong-Mo;Yoon, Myung-Ha;Lee, Hyung-Gon
    • The Korean Journal of Pain
    • /
    • v.23 no.3
    • /
    • pp.179-185
    • /
    • 2010
  • Background: Vincristine-induced peripheral neuropathy is a major dose limiting side effect and thus effective therapeutic strategy is required. In this study, we investigated the antinociceptive effect of memantine and morphine on a vincristine-induced peripheral neuropathy model in rats. Methods: Male Sprague-Dawley rats weighing 220-240 g were used in all experiments. Rats subsequently received daily intraperitoneal injections of either vincristine sulfate (0.1 ml/kg/day) or saline (0.1 ml/kg/day) over 12 days, immediately following behavioral testing. For assessment of mechanical allodynia, mechanical stimuli using von Frey filament was applied to the paw to measure withdrawal threshold. The effects of N-methyl-D-aspartate receptors antagonist (memantine; 2.5, 5, 10 mg/kg intraperitoneal), opioid agonist (morphine; 2.5, 5, 10 mg/kg intraperitoneal) and vehicle (saline) on vicristine-induced neuropathy were evaluated. Results: Mechanical allodynia developed over the course of ten daily injections of vincristine relative to groups receiving saline at the same time. Morphine abolished the reduction in paw withdrawal threshold compared to vehicle and produced dose-responsiveness. Only the highest dose of memantine (10 mg/kg) was able to increase paw withdrawal threshold compared to vehicle. Conclusions: Systemic morphine and memantine have an antinociceptive effect on the vincristine-induced peripheral neuropathy model in rats. These results suggest morphine and memantine may be an alternative approach for the treatment of vincristine-induced peripheral neuropathic pain.

Use of Hypnosis in the Treatment of Pain

  • Lee, Jin-Seong;Pyun, Young-Don
    • The Korean Journal of Pain
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Hypnosis is an altered state of consciousness that comprises of heightened absorption in focal attention, dissociation of peripheral awareness, and enhanced responsiveness to social cues. Hypnosis has a long tradition of effectiveness in controlling somatic symptoms, such as pain. Pain, the most common symptom in clinical practice, is a multi-dimensional experience, which includes sensory-discriminative, affective-emotional, cognitive and behavioral components. There is a growing recognition for hypnosis and related techniques in pain management. Psychological approaches to pain control, such as hypnosis, can be highly effective analgesics, but are underused in Korea. In this article, we would like to review the basic concepts of hypnosis, the mechanism, and the outcome data of the analgesic effects of hypnosis, and also, its limitations.

The Effects of Ginsenoside Rg3 as a Potent Inhibitor of Ca2+ Channels and NMDA-gated Channels in the Peripheral and Central Nervous Systems (말초 및 중추신경계에서 칼슘채널 및 NMDA 매개 채널의 억제제로의 진세노사이드 Rg3의 효과)

  • Rhim, Hye-Whon
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.120-128
    • /
    • 2003
  • Alternative medicines such as herbal products are increasingly being used for preventive and therapeutic purposes. Ginseng is the best known and most popular herbal medicine used worldwide. In spite of some beneficial effects of ginseng on the nervous system, little scientific evidence shows at the cellular level. In the present study, I have examined the direct modulation of ginseng total saponins and individual ginsenosides on the activation of $Ca^{2+}$ channels and NMDA-gated channels in cultured rat dorsal root ganglion (DRG) and hippocampal neurons, respectively. In DRG neurons, application of ginseng total saponins suppressed high-voltage-activated $Ca^{2+}$ channel currents and ginsenoside Rg$_3$, among the 11 ginsenosides tested, produced the strongest inhibition on $Ca^{2+}$ channel currents. Occlusion experiments using selective $Ca^{2+}$ channel blockers revealed that ginsenoside Rg$_3$ could modulate L-, N-, and P/Q-type currents. In addition, ginsenoside Rg$_3$ also proved to be an active component of ginseng actions on NMDA receptors in cultured hippocampal neurons. Application of ginsenoside Rg$_3$ suppressed NMDA-induced [Ca$^{2+}$]$_{i}$ increase and -gated channels using fura-2-based digital imaging and patch-clamp techniques, respectively. These results suggest that the modulation of $Ca^{2+}$ channels and NMDA receptors by ginsenoside Rg$_3$ could be part of the pharmacological basis of ginseng actions in the peripheral and central nervous systems.ous systems.

Effects of cyanocobalamin and its combination with morphine on neuropathic rats and the relationship between these effects and thrombospondin-4 expression

  • Duzenli, Neslihan;Ulker, Sibel;Sengul, Gulgun;Kayhan, Buse;Onal, Aytul
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.66-77
    • /
    • 2022
  • Background: Thrombospondin-4 (TSP4) upregulates in the spinal cord following peripheral nerve injury and contributes to the development of neuropathic pain (NP). We investigated the effects of cyanocobalamin alone or in combination with morphine on pain and the relationship between these effects and spinal TSP4 expression in neuropathic rats. Methods: NP was induced by chronic constriction injury (CCI) of the sciatic nerve. Cyanocobalamin (5 and 10 mg/kg/day) was administered 15 days before CCI and then for 4 and 14 postoperative days. Morphine (2.5 and 5 mg/kg/day) was administered only post-CCI. Combination treatment included cyanocobalamin and morphine, 10 and 5 mg/kg/day, respectively. All drugs were administered intraperitoneally. Nociceptive thresholds were detected by esthesiometer, analgesia meter, and plantar test, and TSP4 expression was assessed by western blotting and fluorescence immunohistochemistry. Results: CCI decreased nociceptive thresholds in all tests and induced TSP4 expression on the 4th postoperative day. The decrease in nociceptive thresholds persisted except for the plantar test, and the increased TSP4 expression reversed on the 14th postoperative day. Cyanocobalamin and low-dose morphine alone did not produce any antinociceptive effects. High-dose morphine improved the decreased nociceptive thresholds in the esthesiometer when administered alone but combined with cyanocobalamin in all tests. Cyanocobalamin and morphine significantly induced TSP4 expression when administered alone in both doses for 4 or 14 days. However, this increase was less when the two drugs are combined. Conclusions: The combination of cyanocobalamin and morphine is more effective in antinociception and partially decreased the induced TSP4 expression compared to the use of either drug alone.

Enhancement of Antinociception by Co-administrations of Nefopam, Morphine, and Nimesulide in a Rat Model of Neuropathic Pain

  • Saghaei, Elham;Zanjani, Taraneh Moini;Sabetkasaei, Masoumeh;Naseri, Kobra
    • The Korean Journal of Pain
    • /
    • v.25 no.1
    • /
    • pp.7-15
    • /
    • 2012
  • Background: Neuropathic pain is a chronic pain due to disorder in the peripheral or central nervous system with different pathophysiological mechanisms. Current treatments are not effective. Analgesic drugs combined can reduce pain intensity and side effects. Here, we studied the analgesic effect of nimesulide, nefopam, and morphine with different mechanisms of action alone and in combination with other drugs in chronic constriction injury (CCI) model of neuropathic pain. Methods: Male Wistar rats (n = 8) weighing 150-200 g were divided into 3 different groups: 1- Saline-treated CCI group, 2- Saline-treated sham group, and 3- Drug-treated CCI groups. Nimesulide (1.25, 2.5, and 5 mg/kg), nefopam (10, 20, and 30 mg/kg), and morphine (1, 3, and 5 mg/kg) were injected 30 minutes before surgery and continued daily to day 14 post-ligation. In the combination strategy, a nonanalgesic dose of drugs was used in combination such as nefopam + morphine, nefopam + nimesulide, and nimesulide + morphine. Von Frey filaments for mechanical allodynia and acetone test for cold allodynia were, respectively, used as pain behavioral tests. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7,10, and 14 post injury. Results: Nefopam (30 mg/kg) and nimesulide (5 mg/kg) blocked mechanical and thermal allodynia; the analgesic effects of morphine (5 mg/kg) lasted for 7 days. Allodynia was completely inhibited in combination with nonanalgesic doses of nefopam (10 mg/kg), nimesulide (1.25 mg/kg), and morphine (3 mg/kg). Conclusions: It seems that analgesic drugs used in combination, could effectively reduce pain behavior with reduced adverse effects.