• Title/Summary/Keyword: periostin

Search Result 14, Processing Time 0.02 seconds

Investigation of the Molecular Diagnostic Market in Animals (동물 분자 진단 시장의 동향)

  • Park, Chang-Eun;Park, Sung-Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.26-33
    • /
    • 2019
  • Recently, the rapid growth of the companion animal market has led to the development of animal disease diagnosis kits. Therefore, the utility of the introduction of biomarkers for the development of animal molecular diagnostics is being reevaluated. A good biomarker should be precise and reliable, distinguish between normal and diseased states, and differentiate between different diseases. Recently reported genetic markers, tumor markers (cell free DNA, circulating tumor cells, granzyme, and skin tumors), and others (brucellosis, programmed death recovery-1, symmetric dimethylarginine, periostin, and cysteinyl leukotrien) have been developed. The biomarkers are used for risk prediction or for the screening, diagnosis, and monitoring of disease progression. The most important criteria for related biomarkers are disease specificity. Many potential biomarkers have emerged from laboratory and test studies, but they have not been validated in independent or large-scale clinical studies. Candidate biomarkers evaluate disease associations, verify the effectiveness of biomarkers for early detection and disease progression, and incorporate them into humans and animals. In the future, it will be necessary to reevaluate the utility of well-structured biomarker-based research and study the development of kits that can be used in on-site tests in accordance with the trends introduced in the diagnosis of animal diseases.

Roles of Sonic Hedgehog Signaling During Tooth Root and Periodontium Formation (치근 및 치주조직 형성과정 동안 Sonic Hedgehog signaling의 역할)

  • Hwang, Jaewon;Cho, Eui-sic;Yang, Yeonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.2
    • /
    • pp.144-153
    • /
    • 2018
  • The aim of this study was to understand the roles of Sonic Hedgehog (SHH) signaling during tooth root and periodontium formation. In this study, we generated the dental mesenchyme-specific Smoothened (Smo) activated/inactivated mice with the activity of Cre recombinase under the control of osteocalcin promoter. In the Smo activated mutant molar sections at the postnatal 28 days, we found extremely thin root dentin and widened pulp chamber. Picrosirius red staining showed loosely arranged fibers in the periodontal space and decreased cellular cementum with some root resorption. Immunohistochemical staining showed less localization of matrix proteins such as Bsp, Dmp1, Pstn, and Ank in the cementum, periodontal ligament, and/or cementoblast. In the Smo inactivated mutant mouse, there was not any remarkable differences in the localization of these matrix proteins compared with the wild type. These findings suggest that adequate suppressing regulation of SHH signaling is required in the development of tooth root and periodontium.

Identification of Matrix Mineralization-Related Genes in Human Periodontal Ligament Cells Using cDNA Microarray (cDNA microarray에 의한 치주인대세포의 광물화 결절형성에 관여하는 유전자들의 분석)

  • Shin, Jae-Hee;Park, Jin-Woo;Yeo, Shin-Il;Noh, Woo-Chang;Kim, Moon-Kyu;Kim, Jung-Chul;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.447-463
    • /
    • 2007
  • Periodontal ligament (PDL) cells have been known as multipotential cells, and as playing an important rolesin periodontal regeneration. The PDL cells are composed of heterogeneous cell populations which have the capacity to differentiate into either cementoblasts or osteoblasts, depending on needs and conditions. Therefore, PDL cells have the capacity to produce mineralized nodules in vitro in mineralization medium which include ascorbic acid, ${\beta}$-glycerophosphate and dexamethasone. In spite of these well-known osteoblast like properties of PDL cells, very little is known about the molecules involved in the formation of the mineralized nodules in the PDL cells. In the present study, we analysed gene-expression profiles during the mineralization process of cultured PDL cells by means of a cDNA microarray consisting of 3063 genes. Nodules of mineralized matrix were strongly stained with alizarin red S on the PDL cells cultured in the media with mineralization supplements. Among 3,063 genes analyzed, 35 were up-regulated more than two-fold at one or more time points in cells that developed matrix mineralization nodules, and 38 were down-regulated to less than half their normal level of expression. In accord with the morphological change we observed, several genes related to calcium-related or mineral metabolism were induced in PDL cells during osteogenesis, such as IGF-II and IGFBP-2. Proteogycan 1, fibulin-5, keratin 5, ,${\beta}$-actin, ${\alpha}$-smooth muscle actin and capping protein, and cytoskeleton and extracellular matrix proteins were up-regulated during mineralization. Several genes encoding proteins related to apoptosis weredifferentially expressed in PDL cells cultured in the medium containing mineralization supplements. Dkk-I and Nip3, which are apoptosis-inducing agents, were up-regulated, and Btf and TAXlBP1, which have an anti-apoptosis activity, were down-regulated during mineralization. Also periostin and S100 calciumbinding protein A4 were down-regulated during mineralization.

Profiling of genes in healthy hGF, aging hGF, healthy hPDLF and inflammatory hPDLF by DNA microarray (DNA microarray법을 이용하여 건강한 치은섬유모세포, 복제노화된 치은섬유모세포, 건강한 치주인대섬유모세포와 염증성치주인대섬유모세포에서 유전자 발현)

  • Yun, Sang-Jun;Kim, Byung-Ock;Yun, Jeong-Hun;Kang, Dong-Wan;Jang, Hyun-Seon
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.767-782
    • /
    • 2006
  • 이 연구의 목적은 DNA microarray 분석법을 이용하여 건강한 사람치주인대섬유모세포, 건강한 사람치은섬유모세포, 복제노화된 사람치은섬유모세포, 염증성 사람치주인대 섬유모 세포의 유전자 발현 형태를 상호비교하고자 하였다. 환자의 동의하에 충치, 치주염이 없이 교정발치된 치아의 치주인대세포를 배양하여 건강한 치주인대섬유모세포로, 만성치주염으로 발거된 치아에서 채취하여 배양한 세포를 염증성 치주인대섬유모세포로 선정하였다. 구강에서 채취한 치은결체조직에서 배양한 사람치은섬유모세포를 일차 배양한 후 계대배양을 통해 복제 노화를 유도하였다. $-198^{\circ}C$의 액화질소에 저장되어 있던 2, 4, 8, 15, 16세대 세포를 실험에 이용하였다. 위의 모든 세포들은 60 mm 배양접시에서 세포들이 80-90%의 밀생이 될 때까지 5% $CO_2$, $37^{\circ}C$, 100% 습도의 배양기에서 2일 간격으로 10% FBS가 함유된 DMEM 세포 배양액을 교체하면서 세포를 배양하였다. Trizol Reagent (Invitrogen, USA)를 이용하여 제조회사의 지시에 따라 total RNA를 추출하였다. 18S RNA와 28S RNA를 확인한 후 DNA microarray 분석을 실시하였다. 4배수 이상의 변화양상을 비교시 상호 유전자 발현의 차이를 나타내었다. 건강한 사람치은섬유모세포(2세대)와 노화된 치은섬유모세포에서 가장 높은 발현변화를 나타낸 반면 DMC1 dosage suppressor of mck1 homolog, meiosis-specific homologous recombination,은 건강한 치은섬유모세포에서 가장 높게 나타났다. 염증성 치은인대섬유모세포와 건강한 치주인대 섬유모세포를 비교시, Regucalcin은 염증성 치주인대섬유모세포에서 가장 높게 나타났고, Vascular cell adhesion molecule 1도 두 번째로 높게 나타났다. 건강한 치주인대섬유모 세포와 건강한 치은섬유모세포를 비교시, IL-11과 periostin이 치주인대섬유모세포에서 높은 발현을 나타낸 반면, Prostaglandin D2 synthase 21kDa과 Thioredoxin interacting protein은 치은섬유모세포에서 높은 발현을 나타내었다. 염증성 치주인대섬유모세포와 노화된 치은섬유모세포(15세대 이상)를 비교시 149개의 유전자가 유사한 발현 수준을 나타내었다. 이 연구는 노화, 염증, 세포 형태에 따라서 유전자 수준에서 가장 높거나 높은 수준 변화를 보이는 유전자가 다를 수 있음을 나타낸다. 향후, 치주염 환자들에서, 노염, 염증, 세포 특이성에 관한 유전자 표시지를 이용하여 진단하거나 치료에 응용하기 위해서는 더 많은 연구가 필요하리라 사료된다.