• Title/Summary/Keyword: periocular biometrics

Search Result 2, Processing Time 0.017 seconds

Periocular Recognition Using uMLBP and Attribute Features

  • Ali, Zahid;Park, Unsang;Nang, Jongho;Park, Jeong-Seon;Hong, Taehwa;Park, Sungjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6133-6151
    • /
    • 2017
  • The field of periocular biometrics has gained wide attention as an alternative or supplemental means to conventional biometric traits such as the iris or the face. Periocular biometrics provide intermediate resolution between the iris and the face, which enables it to support both. We have developed a periocular recognition system by using uniform Multiscale Local Binary Pattern (uMLBP) and attribute features. The proposed system has been evaluated in terms of major factors that need to be considered on a mobile platform (e.g., distance and facial pose) to assess the feasibility of the use of periocular biometrics on mobile devices. Experimental results showed 98.7% of rank-1 identification accuracy on a subset of the Face Recognition Grand Challenge (FRGC) database, which is the best performance among similar studies.

Multimodal Face Biometrics by Using Convolutional Neural Networks

  • Tiong, Leslie Ching Ow;Kim, Seong Tae;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.170-178
    • /
    • 2017
  • Biometric recognition is one of the major challenging topics which needs high performance of recognition accuracy. Most of existing methods rely on a single source of biometric to achieve recognition. The recognition accuracy in biometrics is affected by the variability of effects, including illumination and appearance variations. In this paper, we propose a new multimodal biometrics recognition using convolutional neural network. We focus on multimodal biometrics from face and periocular regions. Through experiments, we have demonstrated that facial multimodal biometrics features deep learning framework is helpful for achieving high recognition performance.