• Title/Summary/Keyword: perilla aldehyde

Search Result 6, Processing Time 0.017 seconds

Current Status and Prospects of Quality Evaluation in Perilla (들깨 품질평가 현황과 전망)

  • 이봉호;류수노;곽태순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.150-162
    • /
    • 2002
  • Perilla, Perilla frutescens. (L.) Britton, is a traditional oil seed crops grown in Korea. The seeds and seed oil is used for edible and some industrial sectors. The seeds of perilla contains 35-54% of a drying oil which is similar to the linseed oil. The fatty acids of seed oil is composed with linolenic acid, linoleic acid, and oleic acid. The majority of fatty acids of the oil is $\alpha$-linolenic acid proportioned 51-71% of the oil. This high linolenic acid makes it unstable of the oil and owing to the fast oxidation. Therefore, the plant breeders are challenges to develope a new varieties with low linolenic acid for edlible oil and high linolenic acid for industrial uses. Perilla foliage is also used as a potherb. The green leaves contains a special flavor, perilla aldehyde, and some abundant minerals and vitamins. The vitamin C and $\beta$-carotene is more available than lettuce and crown-daisy of which used for similar potherb and vegetables in traditional Korean food table. The authors are reviewed and discussed on the current status and prospects of the quality evaluations and researches in perilla seeds and leaves to provide and refers the condensed informations on their quality.

Isolation of Volatile Allelochemicals from Leaves of Perilla frutescens and Artemisia asiatica (들깨(Perilla frutescens)와 쑥(Artemisia asiatics)잎으로부터 휘발성 타감 작용 성분의 분리)

  • Lim, Sun-Uk;Seo, Young-Ho;Lee, Young-Guen;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.115-123
    • /
    • 1994
  • Allelopathic activity of the volatiles from leaves of Perilla frutescens an Artemisia asiatica was determined on the basis of bioassay, which tested germination and seedling growth of radish, rice, mung bean and lettuce. Seedling growth was more inhibited by phytotoxic volatiles than germination. Volatile components collected by headspace cold trapping-Tenax GC adsorption were analyzed by GC-MS. Fifteen volatile components in P. frutescens and 15 components in A. asiatica were identified. By steam distillation-extraction, 4 flavor components in P. frutescens and 10 components in A. asiatica were identified. The inhibitory activity of the fractions, obtained by steam distillation-extraction, was determined by virtue of bioassay on radish. Volatile allelochemicals of the most active fraction, neutral fraction, isolated from P. frutescens contained 9 components. In A. asiatica, 24 volatile allelochemicals were identified.

  • PDF

Analysis of Perilla Frutescens Using Liquid Chromatogram Pattern (자소엽(紫蘇葉)의 한약재 표준화 연구)

  • Kim, Dong-Woo;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.10 no.2
    • /
    • pp.131-145
    • /
    • 2006
  • Perilla frutescens is known as the herb helps digestion, tonifies stomachache, and decreases fever in oriental medicine. And it is reported it possess the anti-pyretic effect, anti-inflammatory effect, anti-allergy effect, anti-tumor effect etc. The components isolated from this herb consist of perilla aldehyde, d-limonene, ${\alpha}-pinene$, cyanin, linoleic acid, palmitic acid, menthol, rosmarinic acid and luteolin etc. But there is no effective tools to determine the quality of this herb. In this study, we aimed to analyze the changes of liquid chromatogram pattern, one of major standardization method, to determine the quality of Perilla frutescens.

  • PDF

Inhibition of Proinflammatory Cytokine Generation in Lung Inflammation by the Leaves of Perilla frutescens and Its Constituents

  • Lim, Hun Jai;Woo, Kyeong Wan;Lee, Kang Ro;Lee, Sang Kook;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.62-67
    • /
    • 2014
  • This study was designed to find some potential natural products and/or constituents inhibiting proinflammatory cytokine generation in lung inflammation, since cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) are pivotal for provoking airway inflammation. In our preliminary screening procedure, the 70% ethanol extract of the leaves of Perilla frutescens (PFE) was found to clearly inhibit TNF-${\alpha}$ production in the lung at 100 mg/kg, after intranasal lipopolysaccharide treatment of mice. Based on this result, ten constituents including phenylpropanoids (allyltetramethoxybenzene, caffeic acid, dillapiole, elemicin, myristicin, nothoapiole, rosmarinic acid methyl ester, rosmarinic acid) and monoterpenes (perilla aldehyde and perilla ketone) were successfully isolated from the extract. Among them, elemicin and myristicin were found for the first time to concentration-dependently inhibit IL-$1{\beta}$-treated IL-6 production from lung alveolar epithelial cells (A549) at concentrations of $10-100{\mu}M$. These findings suggest that the phenylpropanoids including elemicin and myristicin have the potential to be new inhibitory agents against lung inflammation and they may contribute, at least in part, to the inhibitory activity of PFE on the lung inflammatory response.

Analysis of Volatile Compounds in Perilla frutescens var. acuta by Solid Phase Microextraction (SPME에 의한 소엽의 향기성분 분석)

  • Chung, Mi-Sook;Lee, Mie-Soon
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • This study was conducted to find the appropriate fiber for extraction of volatile compounds from Perilla frutescens var. acuta. by solid phase microextraction (SPME). Two SPME fiber, carboxen/polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane (PDMS) were used to determine the selectivity of the fibers to the different flavor compounds present in the Perilla frutescens var. acuta. Thirty-nine compounds were identified in the volatile compounds extracted by CAR/PDMS fiber, including 6 aldehyde, 1 alcohol, 10 hydrocarbons, 17 terpene hydrocarbons, 2 ketones and 3 benzenes. In PDMS fiber, 3 aldehydes, 2 alcohols, 13 terpene hydrocarbons and 2 miscellaneouses were identified. Perillaldehyde was found to be major volatile flavor component of fresh Perilla frutescens var. acuta. Perillaldehyde and terpene hydrocarbons were more identified in PDMS fiber. These results suggested that the selectivity of PDMS fiber was better than that of CAR/PDMS fiber in Perilla frutescens var. acuta..

The Antifungal Activity of Chemical Substances from Artemisia annua (개똥쑥의 천연화학물질에 의한 항균효과와 성분확인)

  • Kim, Hyeon-Cheol;Gil, Bong-Seop
    • The Korean Journal of Ecology
    • /
    • v.24 no.3
    • /
    • pp.137-140
    • /
    • 2001
  • The antifungal activity of chemical substances from Artemisia annua were examined. Antifungal activity of aqueous extracts from A. annua was higher than that of essential oils in Fusarium oxysporum, whereas that of essential oil was higher than that of aqueous extracts in Aspergillus nidulans. The GC/MS methods were employed for the analysis and identification of phytotoxic substances from A. annua. Essential oil of some components were identified including thujone, terpineol, β-pinene, cienole, 2,4-hexndienal, camphor, citronellal, (-)-menthone, (1R)-(-)myrtenol, (S)-(-)-perilla aldehyde, perilla alcohol, 4-tert-buthylaniline, eugenol, isosafrole, isoeugenol and α-humulene. These results suggest that the chemical substances from A. annua such as terphenoids seem to be responsible for the allelopathic effect.

  • PDF