• Title/Summary/Keyword: perfusion method

Search Result 326, Processing Time 0.024 seconds

Effect of Topical Hypothermia on Myocardial Protection from Ischemia - Experimental study using isolated rat heart perfusion technique- (흰쥐의 적출된 작업성 심장에서 허혈성 심정지시 국소냉각법이 심근보호에 미치는 영향)

  • 최종범
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.231-239
    • /
    • 1988
  • Currently numerous methods are in use for myocardial hypothermia as a myocardial preservation modality for cardiac operation. During cardiac ischemia after crystalloid cardioplegia[4C GIK solution], topical cold saline[Group I, a=9], topical ice slush[Group II, n=9] and topical ice chip[Group III, a=10] have been compared for myocardial surface cooling in the isolated rat heart model of cardiopulmonary bypass. During postischemic period, hemodynamic functions[aortic flow, coronary flow, peak aortic pressure and heart rate], biochemical enzymatic activities and cellular injuries with electron microscope were evaluated in this isolated rat heart perfusion model. Postischemic aortic flow, cardiac output and peak aortic pressure in Group I and Group II recovered better than Group III.[p< 0.05] Postischemic creatine kinase and lactate dehydrogenase leakages in Group II and Group III increased more than Group l and postischemic mitochondrial swelling in Group III was more severe than Group I, and Group II.[p< 0.05] These results suggest that topical cold saline was the better method than topical ice slush or topical ice chip as a myocardial preservation modality in the isolated rat heart model of cardiopulmonary bypass.

  • PDF

A Comparison of the Efficacy of Antegrade Cardioplegia Versus Retrograde Right Atrial Cardioplegia for Myocardial Protection During Open Heart Surgery (개심술시 심근보호를 위한 순행성 관관류법과 역행성 관관류법의 비교를 한 실험적 연구)

  • 유시원
    • Journal of Chest Surgery
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 1988
  • This study was undertaken to evaluate the efficacies for myocardial protective effect of retrograde right atrial perfusion [RRAP] of cardioplegia compared with antegrade aortic root perfusion [AARP]. Myocardial distribution of perfusate [using methylene blue] with RRAP was less poor to AARP. Myocardial protective effect was estimated with myocardial temperature and electron microscopy. Cooling protection of right ventricle with RRAP was similar to AARP. On the other hand, cooling protection of left ventricle with RRAP was slight poor to AARP. The electron microscopic ischemic change of right and left ventricle with RRAP was similar to AARP. RRAP was thought to be a good alternative method to perfuse cardioplegia and protect both ventricle.

  • PDF

Experimental Study of Isolated Canine Heart Preservation for 24 Hours at 4$^{\circ}C$ - A Portable Continuous Hypothermic Perfusion System - (적출심장의 장시간 [24시간] 보존에 관한 실험적 연구 -4$^{\circ}C$ 관류 보존법-)

  • 이종국
    • Journal of Chest Surgery
    • /
    • v.21 no.3
    • /
    • pp.425-446
    • /
    • 1988
  • After 24 hours of preservation under 15 mmHg perfusion pressure the recovery rates of isolated canine hearts were determined. Preservation was performed in a cold room maintained at 4*C with 4 different types of perfusates bubbled with a mixture of 95% 0y and 5% CO~ using a modified perfusion unit designed in our institute. The perfusates used were as follows; Group 1: Krebs-Henseleit solution, Group 2: Krebs solution added by albumin and PGE1. Group 3: Modified Wicomb*s solution, Group 4: Modified Collin*s solution. The extent of myocardial recovery was evaluated using a modified isolated carmine perfusion model by measuring heart rate, systolic arterial pressure, left atrial pressure[LAP] and cardiac output. In addition to the above hemodynamic parameters, biochemical and enzymatic assays from perfusates and electron microscopic changes of the myocardium were also studied. The results were as follows; 1] The heart recovery rates were 41.6%, 53.4% and 108.9% in groups 1, 2 and 3, respectively, and group 3 elicited the best result[p< 0.001]. The heart beat was never recovered in group 4. 2] Recovered systolic arterial pressures[mmHg] were 63.3% in group 1, 94.9% in group 2 and 94.3% in group 3. 3] LAPs[mmHg] were 20 in group 1, 13.5 in group 2 and 11.2 in group 3, which suggested that the best myocardial preservation was elicited in group 3[p< 0.05]. 4] Cardiac output, the sum of aortic stroke volume and coronary leakage, were 69.1% in group 2, and 90.7% in group 3, but these were not statistically significant[p=0.24]. No aortic stroke output was measured in group 1 and 4. 5] The degree of myocardial edema increase was 17.5` in group 1, 24.6% in group 2, 20.9% in group 3 and 55.3% in group 4. But there were no statistical differences in each group[p= 0.08]. 6] CPK-MB[U/L] levels were increased 750% and 332%[p< 0.05], glucose levels[mg/dl] 60.5% and 78.2% and SGOT[U/L] levels 523% and 333%, in groups 2 and 3, respectively. Biochemical and enzymatic assays could not be performed in group 1 and group 4, because of poor recovery of heart beat. 7] Electron microscopic findings in the myocardium of most groups revealed slight to moderate muscle cell and mitochondrial edema. But all these findings were within the limits of reversible change. From these above results, it is suggested that modified Wicomb*s solution seems to be the most useful physiologic salt solution for preservation of the heart. We propose that after further study and improvement, our portable continuous hypothermic perfusion system will contribute to the development of a better preservation method for donor hearts for human heart transplantation.

  • PDF

Pulsatility Estimation of a Pulsatile Decellularizing Device for the Fabrication of Organ Scaffold (생체장기용 지지체 제작을 위한 박동형 탈세포화 장치의 박동성 평가)

  • Kim, Dong Sun;Yang, Se-Ran;Park, Sung Min;Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.62-73
    • /
    • 2017
  • To identify a solution for the restricted availability of healthy lungs and the high risk of immune rejections following organ transplantation, tissue engineering techniques for culturing lungs have been studied by many research groups. The most promising method for culturing lungs is the utilization of a bio-scaffold that was prepared using harvested organs from human donors or other animals by removing their original cells. In this study, a pulsatile perfusion pump was used to alleviate the cell removal effect with the high fluid-dynamic power of the perfusion stream during the decellularization process, while other conventional studies focused on chemical methods to identify efficient detergents. The purpose of this study was to analyze the developed device by using energy equivalent pressure (EEP), which is an indicator of pulsatility, to understand the characteristics of pulsatile energy transmitted according to the load size by using the artificial model and compare it with the measured EEP. The pulsatility of the device can be estimated with the concept of fluid-dynamic energy during a particular constant time period or fluid-dynamic power represented as EEP and EEP increment. Because the measured EEP of perfusion flow during decellularization can be changed by the amount of fluid leakage and the degree of clogging in the capillary vessels, EEP should be measured to determine whether the decellularization is progressing without problems. The decrement of EEP caused by the high perfusion resistance was observed from some experimental results that were obtained with artificial models. EEP can be used to monitor the decellularization process after analyzing the varying EEP according to the amount of load. It was confirmed that the EEP was maintained at a high level in the experiment using the harvested lungs from 12-13-week-old rats. In addition, it was confirmed that the cell removal time was faster than when continuous perfusion was performed. In this study, pulsatile power delivered to the lungs was measured to monitor the process of cell removal, and it serve as the evidence for efficient decellularization.

A New Shock Index for Predicting Survival of Rats with Hemorrhagic Shock Using Perfusion and Lactate Concentration Ratio (흰쥐의 출혈성 쇼크에서 관류와 젖산 농도 비를 이용한 새로운 생존 예측 지표 개발)

  • Choi, Jae-Lim;Nam, Ki-Chang;Kwon, Min-Kyung;Jang, Kyung-Hwan;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Hemorrhagic shock is a clinically widespread syndrome characterized by inadequate oxygenation and supply. It is important to diagnose hemorrhagic shock in its early stage for improving treatment effects and survival rate. However, an accurate diagnosis and treatment could be delayed in the early stage of hemorrhagic shock by evaluating only vital signs such as heart rate and blood pressure. There have been many studies for the early diagnosis of hemorrhagic shock, reporting that lactate concentration and perfusion were useful variables for tissue hypoxia and metabolic acidosis. In this study, we measured both perfusion using a laser Doppler flowmeter and lactate concentration from the volume controlled hemorrhagic shock using rats. We also proposed a new shock index which was calculated by dividing lactate concentration by perfusion for early diagnosis. As a result of the survival prediction by the proposed index with the receiver operating characteristic curve method, the sensitivity, specificity, and accuracy of survival were 90.0, 96.7 and 94.0%, respectively. The proposed index showed the fastest significant difference among the other parameters such as blood pressure and heart rate. It could offer early diagnosis and effective treatment for human hemorrhagic shock if it is applicable to humans.

The Influence Evaluation of $^{201}Tl$ Myocardial Perfusion SPECT Image According to the Elapsed Time Difference after the Whole Body Bone Scan (전신 뼈 스캔 후 경과 시간 차이에 따른 $^{201}Tl$ 심근관류 SPECT 영상의 영향 평가)

  • Kim, Dong-Seok;Yoo, Hee-Jae;Ryu, Jae-Kwang;Yoo, Jae-Sook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.67-72
    • /
    • 2010
  • Purpose: In Asan Medical Center we perform myocardial perfusion SPECT to evaluate cardiac event risk level for non-cardiac surgery patients. In case of patients with cancer, we check tumor metastasis using whole body bone scan and whole body PET scan and then perform myocardial perfusion SPECT to reduce unnecessary exam. In case of short term in patients, we perform $^{201}Tl$ myocardial perfusion SPECT after whole body bone scan a minimum 16 hours in order to reduce hospitalization period but it is still the actual condition in which the evaluation about the affect of the crosstalk contamination due to the each other dissimilar isotope administration doesn't properly realize. So in our experiments, we try to evaluate crosstalk contamination influence on $^{201}Tl$ myocardial perfusion SPECT using anthropomorphic torso phantom and patient's data. Materials and Methods: From 2009 August to September, we analyzed 87 patients with $^{201}Tl$ myocardial perfusion SPECT. According to $^{201}Tl$ myocardial perfusion SPECT yesterday whole body bone scan possibility of carrying out, a patient was classified. The image data are obtained by using the dual energy window in $^{201}Tl$ myocardial perfusion SPECT. We analyzed $^{201}Tl$ and $^{99m}Tc$ counts ratio in each patients groups obtained image data. We utilized anthropomorphic torso phantom in our experiment and administrated $^{201}Tl$ 14.8 MBq (0.4 mCi) at myocardium and $^{99m}Tc$ 44.4 MBq (1.2 mCi) at extracardiac region. We obtained image by $^{201}Tl$ myocardial perfusion SPECT without gate method application and analyzed spatial resolution using Xeleris ver 2.0551. Results: In case of $^{201}Tl$ window and the counts rate comparison result yesterday whole body bone scan of being counted in $^{99m}Tc$ window, the difference in which a rate to 24 hours exponential-functionally notes in 1:0.114 with Ventri (GE Healthcare, Wisconsin, USA), 1:0.249 after the bone tracer injection in 12 hours in 1:0.411 with 1:0.79 with Infinia (GE healthcare, Wisconsin, USA) according to a reduction a time-out was shown (Ventri p=0.001, Infinia p=0.001). Moreover, the rate of the case in which it doesn't perform the whole body bone scan showed up as the average 1:$0.067{\pm}0.6$ of Ventri, and 1:$0.063{\pm}0.7$ of Infinia. According to the phantom after experiment spatial resolution measurement result, and an addition or no and time-out of $^{99m}Tc$ administrated, it doesn't note any change of FWHM (p=0.134). Conclusion: Through the experiments using anthropomorphic torso phantom and patients data, we found that $^{201}Tl$ myocardium perfusion SPECT image later carried out after the bone tracer injection with 16 hours this confirmed that it doesn't receive notable influence in spatial resolution by $^{99m}Tc$. But this investigation is only aimed to image quality, so it needs more investigation in patient's radiation dose and exam accuracy and precision. The exact guideline presentation about the exam interval should be made of the validation test which is exact and in which it is standardized about the affect of the crosstalk contamination according to the isotope use in which it is different later on.

  • PDF

A Prediction of Coronary Perfusion Pressure Using the Extracted Parameter From Ventricular Fibrillation ECG Wave (심실세동 심전도 파형 추출 파라미터를 이용한 관상동맥 관류압 예측)

  • Jang Seung-Jin;Hwang Sung-Oh;Yoon Young-Ro;Lee Hyun-Sook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.4
    • /
    • pp.274-283
    • /
    • 2005
  • Coronary Perfusion Pressure(CPP) is known for the most important parameter related to the Return of Spontaneous Circulation (ROSC), however, clinically measuring CPP is difficult either invasive or non-invaisive method. En this paper, we analyze the correlation between the extracted parameter from VF ECG wave and the CPP with the statistical method, and predict CPP value using the extracted parameters within significance level. the extracted parameters are median frequency(MF), peak frequency(PF), average segment amplitude(ASA), MSA(maximum segment amplitude), Two parameters, MF, and ASA are selected in order to predict CPP value with general regression neural network, and then we evaluated the agreement statistics between the simulated CPP and the measured CPP. In conclusion, the mean and variance of the difference between the simulated CPP and the measured CPP are 8.9716±1.3526 mmHg, and standard deviation 6.4815 mmHg with one hundred-times training and test results. the simulated CPP and the measured CPP are agreed with the overall accuracy $90.68\%$ and kappa coefficient $81.14\%$ as a discriminant parameter of ROSC.

Comparison of Inhalation Scan and Perfusion Scan for the Prediction of Postoperative Pulmonary Function (수술후 폐기능 변화의 예측에 대한 연무 흡입스캔과 관류스캔의 비교)

  • Cheon, Young-Kug;Kwak, Young-Im;Yun, Jong-Gil;Zo, Jae-Ill;Shim, Young-Mog;Lim, Sang-Moo;Hong, Sung-Woon;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.2
    • /
    • pp.111-119
    • /
    • 1994
  • Background: Because of the common etiologic factor, such as smoking, lung cancer and chronic obstructive pulmonary disease are often present in the same patient. The preoperative prediction of remaining pulmonary function after the resectional surgery is very important to prevent serious complication and postoperative respiratory failure. $^{99m}Tc$-MAA perfusion scan has been used for the prediction of postoperative pulmonary function, but it may be inaccurate in case of large V/Q mismatching. We compared $^{99m}Tc$-DTPA radioaerosol inhalation scan with $^{99m}Tc$-MAA perfusion scan in predicting postoperative lung function. Method: Preoperative inhalation scan and/or perfusion scan were performed and pulmonary function test were performed preoperatively and 2 month after operation. We predicted the postoperative pulmonary functions using the following equations. Postpneurnonectomy $FEV_1$=Preop $FEV_1x%$ of total function of lung to remain Postlobectomy $FEV_1$=Preop $FEV_1{\times}$(% of total 1-function of affected lung${\times}$$\frac{Number\;of\;segments\;to\;be\;resected}{Number\;of\;segments\;of\;affected\;lung})$ Results: 1) The inhalation scan showed good correlations between measured and predicted $FEV_1$, FVC and $FEF_{25-75%}$. (correlation coefficiency; 0.94, 0.91, 0.87 respectively). 2) The perfusion scan also showed good correlations between measured and predicted $FEV_1$, FVC and $FEF_{25-75%}$. (correlation coefficiency; 0.86, 0.72, 0.87 respectively). 3) Among three parameters, $FEV_1$ showed the best correlations in the prediction by lung scans. 4) Comparison between inhalation scan and perfusion scan in predicting pulmonary function did not show any significant differneces except FVC. Conclusion: The inhalation scan and perfusion scan are very useful in the prediction of postoperative lung function and don't make a difference in the prediction of pulmonary function a1though the former showed a better correlation in FVC.

  • PDF

Performance Evaluation of Automatic Segmentation based on Deep Learning and Atlas according to CT Image Acquisition Conditions (CT 영상획득 조건에 따른 딥 러닝과 아틀라스 기반의 자동분할 성능 평가)

  • Jung Hoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.213-222
    • /
    • 2024
  • This study analyzed the volumes generated by deep learning and atlas-based automatic segmentation methods, as well as the Dice similarity coefficient and 95% Hausdorff distance, according to the conditions of conduction voltage and conduction current in computed tomography for lung radiotherapy. The first result, the volumes generated by the atlas-based smart segmentation method showed the smallest volume change as a function of the change in tube voltage and tube current, while Aview RT ACS and OncoStudio using deep learning showed smaller volumes at tube currents lower than 100 mA. The second result, the Dice similarity coefficient, showed that Aview RT ACS was 2% higher than OncoStuido, and the 95% Hausdorff distance results also showed that Aview RT ACS analyzed an average of 0.2-0.5% higher than OncoStudio. However, the standard deviation of the respective results for tube current and tube voltage is lower for OncoStudio, which suggests that the results are consistent across volume variations. Therefore, caution should be exercised when using deep learning-based automatic segmentation programs at low perfusion voltages and low perfusion currents in CT imaging conditions for lung radiotherapy, and similar results were obtained with conventional atlas-based automatic segmentation programs at certain perfusion voltages and perfusion currents.