• Title/Summary/Keyword: performance-based-plastic design

Search Result 179, Processing Time 0.022 seconds

Convergence Study of Motorsports and Technology : Strength Analysis for the Design of CFRP Bucket Seat (모터스포츠와 기술 융합 연구 : CFRP 버킷 시트 설계를 위한 구조강도 해석)

  • Jang, Woongeun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.165-171
    • /
    • 2019
  • Engineering and Technology have been influencing a lot in the field of sports. Competitiveness, attributes of sports, have forced not only sports players but sports goods to enhance those performance. Particularly in the field of motorsports, the convergence of sports and technology has long been done to satisfy between performance and safety. In this study, strength analysis was carried with FEM to develop CFRP Laminate(Carbon Fiber Reinforced Plastic Laminate) bucket seat targeted to motorsports and car tuning industries and FIA($F\acute{e}d\acute{e}ration$ Internationale de l'Automobile) regulation was applied to design the racing seat and evaluate its strength. FEM modeling considered the attributes of composites was followed by strength evaluation based on Tsai-Wu failure index were done according to Lay-up sequence and layer numbers. The result showed that the lay-up sequence with stacking angle such as $[0^{\circ}/30^{\circ}/60^{\circ}/90^{\circ}/-30^{\circ}/-60^{\circ}]_4$ with 3mm form core was optimal selection in the field of weight and strength evaluation.

The Structural Design of Tianjin Goldin Finance 117 Tower

  • Liu, Peng;Ho, Goman;Lee, Alexis;Yin, Chao;Lee, Kevin;Liu, Guang-lei;Huang, Xiao-yun
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.271-281
    • /
    • 2012
  • Tianjin Goldin Finance 117 tower has an architectural height of 597 m, total of 117 stories, and the coronation of having the highest structural roof of all the buildings under construction in China. Structural height-width ratio is approximately 9.5, exceeding the existing regulation code significantly. In order to satisfy earthquake and wind-resisting requirements, a structure consisting of a perimeter frame composed of mega composite columns, mega braces and transfer trusses and reinforced concrete core containing composite steel plate wall is adopted. Complemented by some of the new requirements from the latest Chinese building seismic design codes, design of the super high-rise building in high-intensity seismic area exhibits a number of new features and solutions to professional requirements in response spectrum selection, overall stiffness control, material and component type selection, seismic performance based design, mega-column design, anti-collapse and stability analysis as well as elastic-plastic time-history analysis. Furthermore, under the prerequisite of economic viability and a series of technical requirements prescribed by the expert review panel for high-rise buildings exceeding code limits, the design manages to overcome various structural challenges and realizes the intentions of the architect and the client.

Study on Performance Prediction and Energy Saving of Indirect Evaporative Cooling System (간접식 증발냉각장치의 성능예측과 에너지절약에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.743-749
    • /
    • 2015
  • The purpose of this study is to predict the performance of an indirect evaporative cooling system, and to evaluate its energy saving effect when applied to the exhaust heat recovery system of an air-handling unit. We derive the performance correlation of the indirect evaporative cooling system using a plastic heat exchanger based on experimental data obtained in various conditions. We predict the variations in the performance of the system for various return and outdoor air conditioning systems using the obtained correlation. We also analyze the energy saving of the system realized by the exhaust heat recovery using the typical meteorological data for several cities in Korea. The average utilization rate of the sensible cooling system for the exhaust heat recovery is 44.3% during summer, while that of the evaporative cooling system is 96.7%. The energy saving of the evaporative cooling system is much higher compared to the sensible cooling system, and was about 3.89 times the value obtained in Seoul.

Seismic Performance of Square RC Column Confined with Spirals (나선철근으로 횡구속된 정사각형 RC 기둥의 내진성능)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.88-97
    • /
    • 2012
  • The objective of this research is to investigate the seismic performance and flexure-shear behavior of square reinforced concrete bridge piers with solid and hollow cross section. Test specimens were nonseismically designed with the aspect ratio 4.5 Two reinforced concrete columns were tested under constant axial load while subjected to lateral load reversals with increasing drift levels. Longitudinal steel ratio was 2.217 percent. The transverse reinforcement ratio As/($s{\cdot}h$), corresponding to 58 percent of the minimum lateral reinforcement required by Korean Bridge Design Specifications for seismic detailing, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. This study are to provide quantitative reference data for the limited ductility design concept and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, collapse, etc. Failure behavior, ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio, residual deformation, effective stiffness, plastic hinge length, strain of reinforcements and nonlinear analysis are investigated and discussed in this paper.

Implications of yield penetration on confinement requirements of r.c. wall elements

  • Tastani, Souzana P.;Pantazopoulou, Stavroula J.
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.831-849
    • /
    • 2015
  • Seismic-design procedures for walls require that the confinement in the critical (plastic hinge) regions should extend over a length in the compression zone of the cross section at the wall base where concrete strains in the Ultimate Limit State (ULS) exceed the limit of 0.0035. In a performance-based framework, confinement is linked to required curvature ductility so that the drift demand at the performance point of the structure for the design earthquake may be met. However, performance of flexural walls in the recent earthquakes in Chile (2010) and Christchurch (2011) indicates that the actual compression strains in the critical regions of many structural walls were higher than estimated, being responsible for several of the reported failures by toe crushing. In this study, the method of estimating the confined region and magnitude of compression strain demands in slender walls are revisited. The objective is to account for a newly identified kinematic interaction between the normal strains that arise in the compression zone, and the lumped rotations that occur at the other end of the wall base due to penetration of bar tension yielding into the supporting anchorage. Design charts estimating the amount of yield penetration in terms of the resulting lumped rotation at the wall base are used to quantify the increased demands for compression strain in the critical section. The estimated strain increase may exceed by more than 30% the base value estimated from the existing design expressions, which explains the frequently reported occurrence of toe crushing even in well confined slender walls under high drift demands. Example cases are included in the presentation to illustrate the behavioral parametric trends and implications in seismic design of walls.

Effects of PZ Strength on Cyclic Seismic Performance of RBS Steel Moment Connections (RBS 철골모멘트접합부의 내진성능에 대한 패널존 강도의 영향)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.149-158
    • /
    • 2006
  • The reduced beam section (RBS) steel moment connection has performed well in past numerous tests. However there still remain several design issues that should be further examined. One such issue on RBS connection performance is the panel zone strength. Although a significant amount of test data are available, a specific recommendation for a desirable range of panel zone strength versus beam strength has yet to be proposed. In this paper, the effects of panel zone strength on the cyclic performance of RBS connection are investigated based on the available test database from comprehensive independent testing programs. A criterion for a balanced panel zone strength that assures sufficient plastic rotation capacity while reducing the amount of beam buckling is proposed. Numerical studies to supplement the test results are then presented based on the validated finite element analysis. Satisfactory numerical simulation achieved in this study also indicates that numerical analysis based on quality finite element modeling can supplement or replace, at least in part, the costly full-scale cyclic testing of steel moment connections.

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

Study on an Automatic Punching System for a LED Display using Flexible Plates (LED 디스플레이용 유연 보드의 자동 펀칭 시스템 연구)

  • Choi, Hyeung-Sik;Kang, Jin-Il;Her, Jae-Gwan;Han, Jong-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.711-717
    • /
    • 2010
  • In this paper, a new automatic punching system that generates pinholes expressing texts or images on a plastic plate is developed. The pin-holed plate is used as a new glamorous display board reflecting colourful lights from the light emitting diode (LED) installed on the edge side of the plate. The punching system has four actuators which work together to make multiple holes with accurate position and depth on the plastic plate. For even reflection of the lights from texts or images on the board and fast production of the pin-holed boards, we developed an accurate actuating structure of the system cooperating with a PID control algorithm. We also built a GUI-based integrated control system to help users easily design luminous texts or images on the plastic plate. Also, we conducted a performance test of the system to verify the punching speed and depth control of the pin holes on the plastic plate.

Ductile Effect of Hybrid Fiber Reinforced Composite Rebar (하이브리드 섬유강화 복합재료 리바의 연성효과)

  • Choi, Myung-Sun;Han, Gil-Young;Lee, Dong-Gi;Ahn, Dong-Gue
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.112-116
    • /
    • 2003
  • This paper describes the need for a ductile of Fiber Reinforced Plastic(FRP) reinforcement for concrete structures. The criteria to be met by the FRP, which are based on the properties of the steel rebar it is to replace, are threefold: high initial modulus, a definite yield point and a high level of ultimate strain. It is shown that the use of a fiber architecture based design methodology facilitates the optimization of the performance of FRP through material and geometric hybrid. Ductile hybrid FRP bars were successfully fabricated at 3mm and 5mm nominal diameters using an in-line braiding and pultrusion process.

  • PDF

A Fundamental Study on the Determination of Optimal Mixing Ratio for Development of Standard Reference Materials for Concrete (콘크리트용 표준물질(Standard Reference Materials)개발의 최적배합비율 결정을 위한 기초연구)

  • Lee, Dong Kyu;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.111-118
    • /
    • 2019
  • Recently, a variety of special concrete structures have been designed in domestic and overseas construction markets and more advanced construction technology is required. Therefore, it is necessary to secure quantitative construction technology. For this purpose, it is essential to develop a standard reference material having a constant flow performance and quality to evaluate quantitative performance. On the other hand, the flowability of the concrete is greatly influenced by the flowability of the cement paste. Also, in consideration of design strength and workability, mix design is carried out at various mixing ratios according to the purpose of the site. Therefore, in this study, based on the derived components of standard reference materials for cement paste, we suggested mixing ratio of standard reference materials that can uniformly simulate the flow characteristics of cement paste according to W/C. As a result, it was found that the yield stress was determined by the ratio of water and glycerol but plastic viscosity was controled by limestone content. Finally, the ratio of standard reference materials to simulate the rheological range of cement paste by W/C was suggested.