• Title/Summary/Keyword: performance-based optimization

Search Result 2,575, Processing Time 0.033 seconds

Combined Service Subscription and Delivery Energy-Efficient Scheduling in Mobile Cloud Computing

  • Liu, Xing;Yuan, Chaowei;Peng, Enda;Yang, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1587-1605
    • /
    • 2015
  • Mobile cloud computing (MCC) combines mobile Internet and cloud computing to improve the performance of applications. In MCC, the data processing and storage for mobile devices (MDs) is provided on the remote cloud. However, MCC faces the problem of energy efficiency caused by randomly varying channels. In this paper, by introducing the Lyapunov optimization method, we propose a combined service subscription and delivery (CSSD) algorithm that can guide the users to subscribe to services reasonably. This algorithm can also determine whether to deliver the data and to whom data is sent in the current time unit based on the queue backlog and the channel state. Numerical results validate the correctness and effectiveness of our proposed CSSD algorithm.

A Genetic Approach for Joint Link Scheduling and Power Control in SIC-enable Wireless Networks

  • Wang, Xiaodong;Shen, Hu;Lv, Shaohe;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1679-1691
    • /
    • 2016
  • Successive interference cancellation (SIC) is an effective means of multi-packet reception to combat interference at the physical layer. We investigate the joint optimization issue of channel access and power control for capacity maximization in SIC-enabled wireless networks. We propose a new interference model to characterize the sequential detection nature of SIC. Afterward, we formulize the joint optimization problem, prove it to be a nondeterministic polynomial-time-hard problem, and propose a novel approximation approach based on the genetic algorithm (GA). Finally, we discuss the design and parameter setting of the GA approach and validate its performance through extensive simulations.

Optimization of Unequal Error Protection Rateless Codes for Multimedia Multicasting

  • Cao, Yu;Blostein, Steven D.;Chan, Wai-Yip
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.221-230
    • /
    • 2015
  • Rateless codes have been shown to be able to provide greater flexibility and efficiency than fixed-rate codes for multicast applications. In the following, we optimize rateless codes for unequal error protection (UEP) for multimedia multicasting to a set of heterogeneous users. The proposed designs have the objectives of providing either guaranteed or best-effort quality of service (QoS). A randomly interleaved rateless encoder is proposed whereby users only need to decode symbols up to their own QoS level. The proposed coder is optimized based on measured transmission properties of standardized raptor codes over wireless channels. It is shown that a guaranteed QoS problem formulation can be transformed into a convex optimization problem, yielding a globally optimal solution. Numerical results demonstrate that the proposed optimized random interleaved UEP rateless coder's performance compares favorably with that of other recently proposed UEP rateless codes.

On Convergence and Parameter Selection of an Improved Particle Swarm Optimization

  • Chen, Xin;Li, Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.559-570
    • /
    • 2008
  • This paper proposes an improved particle swarm optimization named PSO with Controllable Random Exploration Velocity (PSO-CREV) behaving an additional exploration behavior. Different from other improvements on PSO, the updating principle of PSO-CREV is constructed in terms of stochastic approximation diagram. Hence a stochastic velocity independent on cognitive and social components of PSO can be added to the updating principle, so that particles have strong exploration ability than those of conventional PSO. The conditions and main behaviors of PSO-CREV are described. Two properties in terms of "divergence before convergence" and "controllable exploration behavior" are presented, which promote the performance of PSO-CREV. An experimental method based on a complex test function is proposed by which the proper parameters of PSO-CREV used in practice are figured out, which guarantees the high exploration ability, as well as the convergence rate is concerned. The benchmarks and applications on FCRNN training verify the improvements brought by PSO-CREV.

Module Synthesis in Flexible Architecture (유연한 구조의 모듈 합성)

  • 오명섭;권성훈;신현철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.140-150
    • /
    • 1995
  • A symbolic layout generator, called Flexible Module Generator (FMG), has been developed for transgorming a given CMOS circuit netlist into an optimized symbolic layout. Contrary to other conventional module generators which place transistors either in horizontal or in vertical direction, FMG places transittors in any hence can multiples of 90$^{\circ}$. This flexible layout style can maximize the diffusion sharing and hence can reduce the wire-length for both of area minimization and performance improvement. In FMG, transistors are initially randomly placed and then selected transistors are iteratively replaced using an optimization technique based on simulated evolution. Whenever a transistor is replaced, the affected nets are rerouted. Constraints on the shape, aspect ratio, and critical path delays are considered during the optimization process. Routing is performed by using a modified maze router on polysilicon, metal 1, and metal 2 interconnection layers. additional routing grids are added, if necessary, for complete routing. Unused rows or columns are removed after routing for area minimization. Experimental reasults show that FMG synthesizes satisfactory layouts.

  • PDF

Genetic Algorithm을 활용한 Heat Sink 최적 설계

  • Kim, Won-Gon
    • CDE review
    • /
    • v.21 no.2
    • /
    • pp.39-49
    • /
    • 2015
  • This paper presents the single objective design optimization of plate-fin heat sink equipped with fan cooling system using Genetic Algorithm. The proper heat sink and fan model are selected based on the previous studies. And the thermal resistance of heat sinks and fan efficiency during operation are calculated according to specific design parameters. The objective function is combination of thermal resistance and fan efficiency which have been taken to measure the performance of the heat sink. And Decision making procedure is suggested considering life time of semiconductor and Fan Operating cost. And also Analytical Model used for optimization is validated by Fluent, Ansys 13.0 and this model give a quite reasonable and reliable design.

  • PDF

Bending and shear stiffness optimization for rigid and braced multi-story steel frames

  • Gantes, C.J.;Vayas, I.;Spiliopoulos, A.;Pouangare, C.C.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.377-392
    • /
    • 2001
  • The response of multi-story building structures to lateral loads, mainly due to earthquake and wind, is investigated for preliminary design purposes. Emphasis is placed on structural systems consisting of rigid and braced steel frames. An attempt to gain a qualitative understanding of the influence of bending and shear stiffness distribution on the deformations of such structures is made. This is achieved by modeling the structure with a stiffness equivalent Timoshenko beam. It is observed that the conventional stiffness distribution, dictated by strength constraints, may not be the best to satisfy deflection criteria. This is particularly the case for slender structural systems with prevailing bending deformations, such as flexible braced frames. This suggests that a new approach to the design of such frames may be appropriate when serviceability governs. A pertinent strategy for preliminary design purposes is proposed.

An Optimal Design Method on system of Flexible Manufacturing Cells(FMCs) using Simulation Technology

  • Lee, Seung-Hyun;Yoo, Wang-Jin;Yoon, Hee-Jung;Lim, Ik-Sung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.53
    • /
    • pp.89-97
    • /
    • 1999
  • We are concerned with the optimal design of flexible manufacturing cells in this study, thus try to suggest the detail information for each resource on the optimal conditions. Object oriented simulation technology is used to write models more easily and to execute simulation running time more rapidly, and the optimal level of relevant decision variables is probed by response surface methodology(RSM), which is well known for the optimization technology based on experiment design and regression equation. We investigate the optimal level for the number of pallets and the speed of AGVs of FMC systems, carry out the performance analysis of this system. Consequently we suggest systematic procedures for the optimization of FMCs in detail design stage.

  • PDF

Control Law Design Optimization for Helicopter Handling Qualities Using CONDUIT (CONDUIT을 이용한 헬리콥터 조종성에 대한 비행제어법칙 설계 및 최적화)

  • Lee, Jangho;Kim, Eung-Tai;Lee, Sugchon;Ryu, Hyeok
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.23-27
    • /
    • 2012
  • The evaluation of simulation models against ADS-33 quantitative rotorcraft handling qualities metrics has, in the past, been a time consuming effort, involving many individual analyses in both the time and frequency domains. Manual tuning of control system parameters to meet handling qualities and performance specifications has been cumbersome and complicated. Performing rigorous trade-off studies for numerous variations in the control system is too time consuming to be practicable. With the complex interaction of time- and frequency based specifications for the closed- and broken-loop responses, it is difficult to know if the design makes the most effective use of the available control power. The Control Designer's Unified Interface (CONDUIT) software makes possible rapid optimization and trade-offs of design configurations against handling qualities specifications.

Shape Design Sensitivity Analysis of Two-Dimensional Thermal Conducting Solids with Multiple Domains Using the Boundary Element Method (경계요소법을 이용한 2 차원 복수 영역 열전도 고체의 형상 설계 민감도 해석)

  • 이부윤;임문혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.175-184
    • /
    • 2003
  • A method of the shape design sensitivity analysis based on the boundary integral equation formulation is presented for two-dimensional inhomogeneous thermal conducting solids with multiple domains. Shape variation of the external and interface boundary is considered. A sensitivity formula of a general performance functional is derived by taking the material derivative to the boundary integral identity and by introducing an adjoint system. In numerical analysis, state variables of the primal and adjoint systems are solved by the boundary element method using quadratic elements. Two numerical examples of a compound cylinder and a thermal diffuser are taken to show implementation of the shape design sensitivity analysis. Accuracy of the present method is verified by comparing analyzed sensitivities with those by the finite difference. As application to the shape optimization, an optimal shape of the thermal diffuser is found by incorporating the sensitivity analysis algorithm in an optimization program.