• Title/Summary/Keyword: performance-based optimization

Search Result 2,576, Processing Time 0.034 seconds

Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm

  • Zhou, Guang-Dong;Yi, Ting-Hua;Zhang, Huan;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.243-262
    • /
    • 2015
  • Optimal sensor placement (OSP) is a critical issue in construction and implementation of a sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural parameters based on the measured data may dramatically reduce the reliability of the condition evaluation results. In this paper, the information entropy, which provides an uncertainty metric for the identified structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor configurations that simultaneously minimize the appropriately defined information entropy indices. The nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms instead of the real vector coding method. The Hamming distance is employed to describe the divergence of different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and efficiency.

GAN-based Automated Generation of Web Page Metadata for Search Engine Optimization (검색엔진 최적화를 위한 GAN 기반 웹사이트 메타데이터 자동 생성)

  • An, Sojung;Lee, O-jun;Lee, Jung-Hyeon;Jung, Jason J.;Yong, Hwan-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.79-82
    • /
    • 2019
  • This study aims to design and implement automated SEO tools that has applied the artificial intelligence techniques for search engine optimization (SEO; Search Engine Optimization). Traditional Search Engine Optimization (SEO) on-page optimization show limitations that rely only on knowledge of webpage administrators. Thereby, this paper proposes the metadata generation system. It introduces three approaches for recommending metadata; i) Downloading the metadata which is the top of webpage ii) Generating terms which is high relevance by using bi-directional Long Short Term Memory (LSTM) based on attention; iii) Learning through the Generative Adversarial Network (GAN) to enhance overall performance. It is expected to be useful as an optimizing tool that can be evaluated and improve the online marketing processes.

  • PDF

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

Design of X-band Broadband Twist Reflector Using Hybrid Particle Swarm Optimization (Hybrid Particle Swarm Optimization 기법을 적용한 X-대역 광대역 편파 변환기 설계)

  • Hwang, Keum-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.390-395
    • /
    • 2009
  • Design and optimization of a broadband meander-line twist reflector was performed for X-band application. Based on the equivalent transmission line model, the polarization twist performance was evaluated. Genetic analysis, particles swarm, and hybrid swarm optimizations were employed to obtain the optimized geometrical parameters. The optimized design exhibits low cross-polarization level below - 25 dB between 8.45 and 11.38 GHz. The polarization twist loss was below 0.2 dB. Comparison between computed and simulated results was also discussed.

A study on the topology optimization of structures (구조물의 토폴로지 최적화에 관한 연구)

  • Park, Sang-Hun;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1241-1249
    • /
    • 1997
  • The problem of structural topology optimization can be relaxed and converted into the optimal density distribution problem. The optimal density distribution must be post-processed to get the real shape of the structure. The extracted shape can then be used for the next process, which is usually shape optmization based on the boundary movement method. In the practical point of view, it is very important to get the optimal density distribution from which the corresponding shape can easily be extracted. Among many other factors, the presence of checker-board patterns is a powerful barrier for the shape extraction job. The nature of checker-board patterns seems to be a numerical locking. In this paper, an efficient algorithm is presented to suppress the checker-board patterns. At each iteration, density is re-distributed after it is updated according to the optimization rule. The algorithm also results in the optimal density distribution whose corresponding shape has smooth boundary. Some examples are presented to show the performance of the density re-distribution algorithm. Checker-board patterns are successfully suppressed and the resulting shapes are considered very satisfactory.

Material Arrangement Optimization for Automotive BIW considering a Large Number of Design Variables (과다 설계변수를 고려한 차량 BIW의 소재배치 최적화)

  • Park, Dohyun;Jin, Sungwan;Lee, Gabseong;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.15-23
    • /
    • 2013
  • Weight reduction of a automobile has been steadily tried in automotive industry to improve fuel efficiency, driving performance and the production profits. Since the weight of BIW takes up a large portion of the total weight of the automobile, reducing the weight of BIW greatly contributes to reducing the total weight of the vehicle. To reduce weight, vehicle manufacturers have tried to apply lightweight materials, such as aluminum and high-strength steel, to the components of BIW instead of conventional steel. In this research, material arrangement of an automotive BIW was optimized by formulating a design problem to minimize weight of the BIW while satisfying design requirements about bending and torsional stiffness and perform a metamodel-based design optimization strategy. As a result of the design optimization, weight of the BIW is reduced by 45.7% while satisfying all design requirements.

Query Optimization Scheme using Query Classification in Hybrid Spatial DBMS (하이브리드 공간 DBMS에서 질의 분류를 이용한 최적화 기법)

  • Chung, Weon-Il;Jang, Seok-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.290-299
    • /
    • 2008
  • We propose the query optimization technique using query classification in hybrid spatial DBMS. In our approach, user queries should to be classified into three types: memory query, disk query, and hybrid query. Specialty, In the hybrid query processing, the query predicate is divided by comparison between materialized view creating conditions and user query conditions. Then, the deductions of the classified queries' cost formula are used for the query optimization. The optimization is mainly done by the selection algorithm of the smallest cost data access path. Our approach improves the performance of hybrid spatial DBMS than traditional disk-based DBMS by $20%{\sim}50%$.

Optimum parameterization in grillage design under a worst point load

  • Kim Yun-Young;Ko Jae-Yang
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • The optimum grillage design belongs to nonlinear constrained optimization problem. The determination of beam scantlings for the grillage structure is a very crucial matter out of whole structural design process. The performance of optimization methods, based on penalty functions, is highly problem-dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm ($R{\mu}GA$) is proposed to find the optimum beam scantlings of the grillage structure without handling any of penalty functions. $R{\mu}GA$ can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. Direct stiffness method is used as a numerical tool for the grillage analysis. In optimization study to find minimum weight, sensitivity study is carried out with varying beam configurations. From the simulation results, it has been concluded that the proposed $R{\mu}GA$ is an effective optimization tool for solving continuous and/or discrete nonlinear real-world optimization problems.

Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique (부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경)

  • 이준호;정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF

Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method

  • Dizangian, Babak;Ghasemi, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.613-626
    • /
    • 2021
  • In this paper, an enhanced Violation-based Sensitivity analysis and Border-Line Adaptive Sliding Technique (ViS-BLAST) will be utilized for optimization of some well-known structural and mechanical engineering problems. ViS-BLAST has already been introduced by the authors for solving truss optimization problems. For those problems, this method showed a satisfactory enactment both in speed and efficiency. The Enriched ViS-BLAST or EVB is introduced to be vastly applicable to any solvable constrained optimization problem without any specific initialization. It uses one-directional step-wise searching technique and mostly limits exploration to the vicinity of FNF border and does not explore the entire design space. It first enters the feasible region very quickly and keeps the feasibility of solutions. For doing this important, EVB groups variables for specifying the desired searching directions in order to moving toward best solutions out or inside feasible domains. EVB was employed for solving seven numerical engineering design problems. Results show that for problems with tiny or even complex feasible regions with a larger number of highly non-linear constraints, EVB has a better performance compared to some records in the literature. This dominance was evaluated in terms of the feasibility of solutions, the quality of optimum objective values found and the total number of function evaluations performed.