• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.032 seconds

A Study on the Parameter Optimization of Inverter for Induction Heating Cooking Appliance (유도가열 조리기기용 인버터 파라미터 최적화에 관한 연구)

  • Kang, Byung-Kwan;Lee, Se-Min;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • With the advent of power semiconductor switching devices, power electronics relating to high frequency electromagnetic eddy current based induction heating technology have become more suitable and acceptable. This paper presents high-frequency induction heating cooking appliance circuit based on the zero current switching-PWM single ended push-pull(ZCS-PWM SEPP) resonant inverter added AC-DC converter. This inverter uses pulse-width-modulation(PWM) control method with active auxiliary quasi-resonant lossless inductor snubbers and a switched capacitor. To improved the transient performance, the PI controller is applied for this system. For the systematic parameter optimization of the PI controller, the gradient-based optimization algorithm is applied. The performance of optimized parameters is evaluated using simulation and experimental test. These results show that the proposed systematic optimal tuning method improve the transient performances of this system.

Parameter Optimal Choice of Claw Pole Alternator based on Iron Loss Model

  • Bao, Xiaohua;Wei, Qiong;Wu, Feng;Li, Jiaqing
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.260-268
    • /
    • 2013
  • Based on classical Berotti discrete iron loss calculation model, the iron loss analysis mathematical model of alternator was proposed in this paper. Considering characteristics of high speed and changing frequency of the alternator, Maxwell 3-D model was built to analyze iron loss corresponding to each running speed in alternator. Based on iron loss model of alternator at rated speed, the rotor claw pole size was made an optimization design. The optimization results showed that alternator's output performance had been improved. A new idea was explored in size optimization design of claw pole alternator.

Reliability Based Design Optimization of the Softwater Pressure Tank Considering Temperature Effect (온도영향을 고려한 연수기 압력탱크의 신뢰성 최적설계)

  • Bae Chul-Ho;Kim Mun-Seong;Suh Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1458-1466
    • /
    • 2004
  • Deterministic optimum designs that are obtained without consideration of uncertainties could lead to unrealiable designs. Such deterministic engineering optimization tends to promote the structural system with less reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. This paper proposes the reliability based design optimization technique fur apressure tank considering temperature effect. This paper presents an efficient and stable reliability based design optimization method by using the advanced first order second moment method, which evaluates a probabilistic constraint for more accuracy. In addition, the response surface method is utilized to approximate the performance functions describing the system characteristics in the reliability based design optimization procedure.

Goal-Pareto based NSGA Optimization Algorithm (Goal-Pareto 기반의 NSGA 최적화 알고리즘)

  • Park, Jun-Su;Park, Soon-Kyu;Shin, Yo-An;Yoo, Myung-Sik;Lee, Won-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.108-115
    • /
    • 2007
  • This paper proposes a new optimization algorithm prescribed by GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm) whose result satisfies the user's needs and goals to enhance the performance of optimization. Typically, lots of real-world engineering problems encounter simultaneous optimization subject to satisfying prescribed multiple objectives. Unfortunately, since these objectives might be mutually competitive, it is hardly to find a unique solution satisfying every objectives. Instead, many researches have been investigated in order to obtain an optimal solution with sacrificing more than one objectives. This paper introduces a novel optimization scheme named by GBNSGA obeying both goals as well as objectives as possible as it can via allocating candidated solutions on Pareto front, which enhances the performance of Pareto based optimization. The performance of the proposed GBNSGA will be compared with that of the conventional NSGA and weighted-sum approach.

Barrier Function Method in Reliability Based Design Optimization (장애함수법에 의한 신뢰성기반 최적설계)

  • Lee, Tae-Hee;Choi, Woon-Yong;Kim, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

Fuzzy Identification by Means of an Auto-Tuning Algorithm and a Weighted Performance Index

  • Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.106-118
    • /
    • 1998
  • The study concerns a design procedure of rule-based systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient from of "IF..., THEN..." statements, and exploits the theory of system optimization and fuzzy implication rules. The method for rule-based fuzzy modeling concerns the from of the conclusion part of the the rules that can be constant. Both triangular and Gaussian-like membership function are studied. The optimization hinges on an autotuning algorithm that covers as a modified constrained optimization method known as a complex method. The study introduces a weighted performance index (objective function) that helps achieve a sound balance between the quality of results produced for the training and testing set. This methodology sheds light on the role and impact of different parameters of the model on its performance. The study is illustrated with the aid of two representative numerical examples.

  • PDF

A Comparative Study on Reliability Index and Target Performance Measure Based Probabilistic Structural Design Optimizations (신뢰도지수와 목표성능치에 기반한 확률론적 구조설계 최적화기법에 대한 비교연구)

  • 양영순;이재옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.32-39
    • /
    • 2000
  • Probabilistic structural design optimization, which is characterized by the so-called probabilistic. constraints which introduce permissible probability of violation, is preferred to deterministic design optimization since unpredictable inherent uncertainties and randomness in structural and environmental properties are to be taken quantitatively into account by probabilistic design optimization. In this paper, the well-known reliability index based MPFP(Most Probable Failure Point) search approach and the newly introduced target performance measure based MPTP(Minimum Performance Target Point) search approach are summarized and compared. The present comparison focuses on the number of iterations required for the estimation of probabilistic constraints and a technique for improvement which removes exhaustive iterations is presented as well. A 10 bar truss problem is examined for this.

  • PDF

Agent-based Lift-car Group Operation Optimization Model in High-rise Building Construction

  • Jung, Minhyuk;Park, Moonseo;Lee, Hyun-soo;Hyun, Hosang
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.221-225
    • /
    • 2015
  • To hoist construction workers to their working space is directly related to the productivity of building construction since hoisting tasks are carried out during the working time. In order to reduce hoisting time in the condition that the number of construction lift-cars is limited, various types of the lift-cars group operation plans such as zoning and sky-lobby have been applied. However, previous researches on them cannot be compared in the performance due to their methodological limitation, discrete-event simulation methods, and cannot be find better solution to increase the performance. Therefore, this research proposed the simulation-based optimization model combining the agent-based simulation method to the scatter search optimization methods. Using the proposed model, this paper carried out the comparison analysis on the performance of typical operation plans and also optimize an operation plans by controlling the service range of lift-cars, the size and number of service zones. In this case study, it is verified that better alternatives than typical operation plans can be exists and it is possible to increase the productivity of building construction.

  • PDF

A cross-entropy algorithm based on Quasi-Monte Carlo estimation and its application in hull form optimization

  • Liu, Xin;Zhang, Heng;Liu, Qiang;Dong, Suzhen;Xiao, Changshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Simulation-based hull form optimization is a typical HEB (high-dimensional, expensive computationally, black-box) problem. Conventional optimization algorithms easily fall into the "curse of dimensionality" when dealing with HEB problems. A recently proposed Cross-Entropy (CE) optimization algorithm is an advanced stochastic optimization algorithm based on a probability model, which has the potential to deal with high-dimensional optimization problems. Currently, the CE algorithm is still in the theoretical research stage and rarely applied to actual engineering optimization. One reason is that the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in parameter update, leading to a large sample size. This paper proposes an improved CE algorithm based on quasi-Monte Carlo (QMC) estimation using high-dimensional truncated Sobol subsequence, referred to as the QMC-CE algorithm. The optimization performance of the proposed algorithm is better than that of the original CE algorithm. With a set of identical control parameters, the tests on six standard test functions and a hull form optimization problem show that the proposed algorithm not only has faster convergence but can also apply to complex simulation optimization problems.

The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems (시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과)

  • Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.