• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.031 seconds

Outage Analysis and Optimization for Four-Phase Two-Way Transmission with Energy Harvesting Relay

  • Du, Guanyao;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3321-3341
    • /
    • 2014
  • This paper investigates the outage performance and optimization for the four-phase two-way transmission network with an energy harvesting (EH) relay. To enable the simultaneous information processing and energy harvesting at the relay, we firstly propose a power splitting-based two-way relaying protocol (PSTWR). Then, we discuss its outage performance theoretically and derive an explicit expression for the system outage probability. In order to find the optimal system configuration parameters such as the optimal power splitting ratio and the optimal transmit power redistribution factor, we formulate an outage-minimized optimization problem. As the problem is difficult to solve, we design a genetic algorithm (GA) based algorithm for it. Besides, we also investigate the effects of the power splitting ratio, the power redistribution factor at the relay, and the source to relay distance on the system outage performance. Finally, extensive simulation results are provided to demonstrate the accuracy of the analytical results and the effectiveness of the GA-based algorithm. Moreover, it is also shown that, the relay position greatly affects the system performance, where relatively worse outage performance is achieved when the EH relay is placed in the middle of the two sources.

FEM-based Bayesian Optimization of Electromagnet Configuration for Enhancing Microrobot Actuation (마이크로 로봇 작동 성능 향상을 위한 FEM 기반의 전자석 배치 베이지안 최적화)

  • Hyeokjin Kweon;Donghoon Son
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2024
  • This paper introduces an approach to enhance the performance of magnetic manipulation systems for microrobot actuation. A variety of eight-electromagnet configurations have been proposed to date. The previous study revealed that achieving 5 degrees of freedom (5-DOF) control necessitates at least eight electromagnets without encountering workspace singularities. But so far, the research considering the influence of iron cores embedded in electromagnets has not been conducted. This paper offers a novel approach to optimizing electromagnet configurations that effectively consider the influence of iron cores. The proposed methodology integrates probabilistic optimization with finite element methods (FEM), using Bayesian Optimization (BO). The Bayesian optimization aims to optimize the worst-case magnetic force generation for enhancing the performance of magnetic manipulation system. The proposed simulation-based model achieves approximately 20% improvement compared to previous systems in terms of actuation performance. This study has the potential for enhancing magnetic manipulation systems for microrobot control, particularly in medical and microscale technology applications.

Design of TLBO-based Optimal Fuzzy PID Controller for Magnetic Levitation System (자기부상시스템을 위한 교수-학습 최적화 알고리즘 기반의 퍼지 PID 제어기 설계)

  • Cho, Jae-Hoon;Kim, Yong Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.701-708
    • /
    • 2017
  • This paper proposes an optimum design method using Teaching-Learning-based optimization for the fuzzy PID controller of Magnetic levitation rail-guided vehicle. Since an attraction-type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through the conventional control methods. In the paper, a fuzzy PID controller with fixed parameters is applied and then the optimum parameters of fuzzy PID controller are selected by Teaching-Learning optimization. For the fitness function of Teaching-Learning optimization, the performance index of PID controller is used. To verify the performances of the proposed method, we use a Maglev model and compare the proposed method with the performance of PID controller. The simulation results show that the proposed method is more effective than conventional PID controller.

Numerical analysis of quantization-based optimization

  • Jinwuk Seok;Chang Sik Cho
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.367-378
    • /
    • 2024
  • We propose a number-theory-based quantized mathematical optimization scheme for various NP-hard and similar problems. Conventional global optimization schemes, such as simulated and quantum annealing, assume stochastic properties that require multiple attempts. Although our quantization-based optimization proposal also depends on stochastic features (i.e., the white-noise hypothesis), it provides a more reliable optimization performance. Our numerical analysis equates quantization-based optimization to quantum annealing, and its quantization property effectively provides global optimization by decreasing the measure of the level sets associated with the objective function. Consequently, the proposed combinatorial optimization method allows the removal of the acceptance probability used in conventional heuristic algorithms to provide a more effective optimization. Numerical experiments show that the proposed algorithm determines the global optimum in less operational time than conventional schemes.

Energy-efficient Power Allocation based on worst-case performance optimization under channel uncertainties

  • Song, Xin;Dong, Li;Huang, Xue;Qin, Lei;Han, Xiuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4595-4610
    • /
    • 2020
  • In the practical communication environment, the accurate channel state information (CSI) is difficult to obtain, which will cause the mismatch of resource and degrade the system performance. In this paper, to account for the channel uncertainties, a robust power allocation scheme for a downlink Non-orthogonal multiple access (NOMA) heterogeneous network (HetNet) is designed to maximize energy efficiency (EE), which can ensure the quality of service (QoS) of users. We conduct the robust optimization model based on worse-case method, in which the channel gains belong to certain ellipsoid sets. To solve the non-convex non-liner optimization, we transform the optimization problem via Dinkelbach method and sequential convex programming, and the power allocation of small cell users (SCUs) is achieved by Lagrange dual approach. Finally, we analysis the convergence performance of proposed scheme. The simulation results demonstrate that the proposed algorithm can improve total EE of SCUs, and has a fast convergence performance.

Research on the optimization method for PGNAA system design based on Signal-to-Noise Ratio evaluation

  • Li, JiaTong;Jia, WenBao;Hei, DaQian;Yao, Zeen;Cheng, Can
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2221-2229
    • /
    • 2022
  • In this research, for improving the measurement performance of Prompt Gamma-ray Neutron Activation Analysis (PGNAA) set-up, a new optimization method for set-up design was proposed and investigated. At first, the calculation method for Signal-to-Noise Ratio (SNR) was proposed. Since the SNR could be calculated and quantified accurately, the SNR was chosen as the evaluation parameter in the new optimization method. For discussing the feasibility of the SNR optimization method, two kinds of PGNAA set-ups were designed in the MCNP code, based on the SNR optimization method and the previous signal optimization method, respectively. Meanwhile, the single element spectra analysis method was proposed, and the analysis effect of single element spectra as well as element sensitivity were used for comparing the measurement performance. Since the simulation results showed the better measurement performance of set-up designed by SNR optimization method, the experimental set-ups were built for the further testing, finally demonstrating the feasibility of the SNR optimization method for PGNAA setup design.

Performance Analysis of Local Optimization Algorithms in Resource-Constrained Project Scheduling Problem (자원제약 프로젝트 스케쥴링 문제에 적용 가능한 부분 최적화 방법들의 성능 분석)

  • Yim, Dong-Soon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.408-414
    • /
    • 2011
  • The objective of this paper is to define local optimization algorithms (LOA) to solve Resource-Constrained Project Scheduling Problem (RCPSP) and analyze the performance of these algorithms. By representing solutions with activity list, three primitive LOAs, i.e. forward and backward improvement-based, exchange-based, and relocation-based LOAs are defined. Also, combined LOAs integrating two primitive LOAs are developed. From the experiments with standard test set J120 generated using ProGen, the FBI-based LOA demonstrates to be an efficient algorithm. Moreover, algorithms combined with FBI-based LOA and other LOA generate good solutions in general. Among the considered algorithms, the combined algorithm of FBI-based and exchangebased shows best performance in terms of solution quality and computation time.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

Methodology To Prevent Local Optima And Improve Optimization Performance For Time-Cost Optimization Of Reinforcement-Learning Based Construction Schedule Simulation

  • Jeseop Rhie;Minseo Jang;Do Hyoung Shin;Hyungseo Han;Seungwoo Lee
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.769-774
    • /
    • 2024
  • The availability of PMT(Project Management Tool) in the market has been increasing rapidly in recent years and Significant advancements have been made for project managers to use for planning, monitoring, and control. Recently, studies applying the Reinforcement-Learning Based Construction Schedule Simulation algorithm for construction project process planning/management are increasing. When reinforcement learning is applied, the agent recognizes the current state and learns to select the action that maximizes the reward among selectable actions. However, if the action of global optimal points is not selected in simulation selection, the local optimal resource may receive continuous compensation (+), which may result in failure to reach the global optimal point. In addition, there is a limitation that the optimization time can be long as numerous iterations are required to reach the global optimal point. Therefore, this study presented a method to improve optimization performance by increasing the probability that a resource with high productivity and low unit cost is selected, preventing local optimization, and reducing the number of iterations required to reach the global optimal point. In the performance evaluation process, we demonstrated that this method leads to closer approximation to the optimal value with fewer iterations.

Tolerance Analysis and Optimization for a Lens System of a Mobile Phone Camera (휴대폰용 카메라 렌즈 시스템의 공차최적설계)

  • Jung, Sang-Jin;Choi, Dong-Hoon;Choi, Byung-Lyul;Kim, Ju-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.397-406
    • /
    • 2011
  • Since tolerance allocation in a mobile phone camera manufacturing process greatly affects production cost and reliability of optical performance, a systematic design methodology for allocating optimal tolerances is required. In this study, we proposed the tolerance optimization procedure for determining tolerances that minimize production cost while satisfying the reliability constraints on important optical performance indices. We employed Latin hypercube sampling for evaluating the reliabilities of optical performance and a function-based sequential approximate optimization technique that can reduce computational burden and well handle numerical noise in the tolerance optimization process. Using the suggested tolerance optimization approach, the optimal production cost was decreased by 30.3 % compared to the initial cost while satisfying the two constraints on the reliabilities of optical performance.