• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.03 seconds

IPv6 Handover Performance for Mobile IPTV over Mobile WiMAX Networks (모바일 WIMAX 네트워크 기반의 모바일 IPTV를 위한 IPv6 핸드오버 성능)

  • Trung, Bui Minh;Chowdhury, Mostafa Zaman;Nguyen, Tuan;Jang, Yeong-Min;Kim, Young-Il;Ryu, Won
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.51-59
    • /
    • 2011
  • To support seamless IPTV services in IP-based wireless network, delay or interruption time must be minimized because noticeable interruption will make IPTV service users unhappy. A number of protocols have been proposed for solving mobility problem. However effective seamless handover mechanism to support mobile IPTV services yet to be solved. Mobile WiMAX offers a wireless solution in the access networks that can support IPTV services. Goal of this paper is to identify some reasons of delay time during handover process in an IPv6 capable Mobile WiMAX and to perform handover delay of some optimization scenarios given by existing standardization and proposed improvement.

A Channel Management Technique using Neural Networks in Wireless Networks (신경망를 이용한 무선망에서의 채널 관리 기법)

  • Ro Cheul-Woo;Kim Kyung-Min;Lee Kwang-Eui;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.115-119
    • /
    • 2006
  • The channel is one of the precious and limited resources in wireless networks. There are many researches on the channel management. Recently, the optimization problem of guard channels has been an important issue. In this paper, we propose an intelligent channel management technique based on the neural networks. An SRN channel alteration model is developed to generate the learning data for the neural networks and the performance analysis of system. In the proposed technique, the neural network is trained to generate optimal guard channel number g, using backpropagation supervised learning algorithm. The optimal g is computed using the neural network and compared to the g computed by the SRN model. The numerical results show that the difference between the value of g by backpropagation and that value by SRN model is ignorable.

  • PDF

A Study on the Optimization of Linear Equalizer for Underwater Acoustic Communication (수중음향통신을 위한 선형등화기의 최적화에 관한 연구)

  • Lee, Tae-Jin;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.637-641
    • /
    • 2012
  • In this paper, the method that reduce a computation time by optimizing computation process is proposed to realize low-power underwater acoustic communication system. At first, dependency of decision delay on tap length of linear equalizer was investigated. Variance is calculated based on this result, and the optimal decision delay bound is estimated. In addition to decide optimal tap length with decision delay, we extracted the MSE(Mean Square Error) graph. From the graph, we obtained variance value of the MSE-decision delay, and estimated the optimum decision delay range from the variance value. Also, using the extracted optimal parameters, we performed a simulation. According to the result, the simulation employing optimal tap length, which is only 40% of maximum tap length, showed a satisfactory performance comparable to simulation employing maximum tap length. We verified that the proposed method has 33% lower tap length than maximal tap length via sea trial.

User Scheduling Algorithm Based on Signal Quality and Inter-User Interference for Outage Minimization in Full-Duplex Cellular Networks (전이중 셀룰라 네트워크에서 아웃티지 최소화를 위한 신호 품질과 사용자간 간섭량 기반의 사용자 스케쥴링 알고리즘)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2576-2583
    • /
    • 2015
  • In a full-duplex (FD) wireless cellular network, uplink (UL) users induce the severe inter-user interference to downlink (DL) users. Therefore, a user scheduling that makes a pair of DL user and UL user to use the same radio resource simultaneously influences the system performances significantly. In this paper, we first formulate an optimization problem for user scheduling to minimize the occurrence of outage, aiming to guarantee the quality of service of users, and then we propose a suboptimal user scheduling algorithm with low complexity. The proposed scheduling algorithm is designed in a way where the DL user with a worse signal quality has a higher priority to choose its UL user that causes less interference. Simulation results show that the FD system using the proposed user scheduling algorithm achieves the optimal performance and significantly decreases the outage probability compared with the conventional half-duplex cellular system.

A Study on the Control of the Welding Quality Using a Infrared sensor (적외선센서를 이용한 용접품질 제어에 관한 연구)

  • Kim I.S.;Son S.J.;Kim I.J.;Kim H.H.;Seo J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.754-758
    • /
    • 2005
  • Optimization of process variables such as arc current, welding voltage and welding speed in terms of the weld characteristics desired is the key step in achieving high quality and improving performance characteristics without increasing the cost. Consequently, incorrect settings of those process variables give rise to deviations in the welding characteristics from the desired bead geometry. Therefore, trainee welders are referred to the tabulated information relating different metal types and thickness as to recommend the desired values of process variables. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. However, it is difficult for the traditional identification methods to provide an accurate model because the optimized welding process is non-linear and time-dependent. In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

A Novel Ambiguity Resolution Method of Radar Pulses using Genetic Algorithm (유전 알고리즘 기반 레이더 펄스 모호성 해결방법)

  • Han, Jinwoo;Jo, Jeil;Kim, Sanhae;Park, Jintae;Song, Kyuha
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.184-193
    • /
    • 2015
  • Passive Surveillance System based on the TDOA detects the emitter position in the air using TOA of pulses comprising emitter signal from multiple receivers. In case that PRI of pulses from the emitter is not enough big in comparison with the distance among receivers, it causes the ambiguity problem in selecting proper pulse pairs for TDOA emitter geolocation. In this paper, a novel ambiguity resolution method of radar pulses is presented by using genetic algorithm after changing ambiguity problem into optimization problem between TDOA of received pulses from each receiver and emitter position. Simulation results are presented to show the performance of the proposed method.

A Design of Parameterized Viterbi Decoder for Multi-standard Applications (다중 표준용 파라미터화된 비터비 복호기 IP 설계)

  • Park, Sang-Deok;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1056-1063
    • /
    • 2008
  • This paper describes an efficient design of a multi-standard Viterbi decoder that supports multiple constraint lengths and code rates. The Viterbi decoder is parameterized for the code rates 1/2, 1/3 and constraint lengths 7,9, thus it has four operation nodes. In order to achieve low hardware complexity and low power, an efficient architecture based on hardware sharing techniques is devised. Also, the optimization of ACCS (Accumulate-Subtract) circuit for the one-point trace-back algorithm reduces its area by about 35% compared to the full parallel ACCS circuit. The parameterized Viterbi decoder core has 79,818 gates and 25,600 bits memory, and the estimated throughput is about 105 Mbps at 70 MHz clock frequency. Also, the simulation results for BER (Bit Error Rate) performance show that the Viterbi decoder has BER of $10^{-4}$ at $E_b/N_o$ of 3.6 dB when it operates with code rate 1/3 and constraints 7.

A Study on the Combustion Characteristic of Paraffin Fuel Based Hybrid Rocket with the Post Chamber L/D Ratio (하이브리드 로켓용 파라핀 연료의 후연소실 L/D비 변화에 따른 연소 특성 연구)

  • Ko, Suhan;Lee, Donghee;Kwon, Sejin;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.19-26
    • /
    • 2019
  • Paraffin fuels usually have low combustion efficiency due to discharged unburnt droplets from the nozzle. Therefore, optimization of the post-chamber is becoming an important factor for performance. In this study, combustion experiments were conducted by changing either the length or diameter of the post-chamber to reveal the combustion behavior of paraffin fuel for hybrid rocket. As a result, the combustion efficiency improved due to the increase of the residence time as the post-chamber length increased. On the other hand, it is found that the influence of the diameter change was not significant compared with the case of variable post-chamber length.

Study on the Optimization of Parameters for Burring Process Using 980MPa Hot-rolled Thick Sheet Metal (980MPa급 열연 후판재 버링 공정의 변수 최적화 연구)

  • Kim, S.H.;Do, D.T.;Park, J.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.291-300
    • /
    • 2021
  • Currently, starting with electric vehicles, the application of ultra-high-strength steel sheets and light metals has expanded to improve mileage by reducing vehicle weight. At a time when internal combustion engine vehicles are rapidly changing to electric vehicles, the application of ultra-high-strength steel is expanding to satisfy both weight reductions and the performance safety of the chassis parts. There is an urgent need to improve the quality of parts without defects. It is particularly difficult to estimate the part formability through the finite element method (FEM) in the burring operation, so product design has been based on the hole expansion ratio (HER) and experience. In this study, design of experiment (DOE), analysis of variance (ANOVA), and regression analysis were combined to optimize the formability by adjusting the process variables affecting the burring formability of ultra-high-strength steel parts. The optimal variables were derived by analyzing the influence of variables and the correlation between the variables through FE analysis. Finally, the optimized process parameters were verified by comparing experiment with simulation. As for the main influence of each process variable, the initial hole diameter of the piercing process and the shape height of the preforming process had the greatest effects on burring formability, while the effect of a lower round of punching in the burring process was the least. Moreover, as the diameter of the initial hole increased, the thickness reduction rate in the burring part decreased, and the final burring height increased as the shape height during preforming increased.

Development of Random Forest Model for Sewer-induced Sinkhole Susceptibility (손상 하수관으로 인한 지반함몰의 위험도 평가를 위한 랜덤 포레스트 모델 개발)

  • Kim, Joonyoung;Kang, Jae Mo;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.117-125
    • /
    • 2021
  • The occurrence of ground subsidence and sinkhole in downtown areas, which threatens the safety of citizens, has been frequently reported. Among the various mechanisms of a sinkhole, soil erosion through the damaged part of the sewer pipe was found to be the main cause in Seoul. In this study, a random forest model for predicting the occurrence of sinkholes caused by damaged sewer pipes based on sewage pipe information was trained using the information on the sewage pipe and the locations of the sinkhole occurrence case in Seoul. The random forest model showed excellent performance in the prediction of sinkhole occurrence after the optimization of its hyperparameters. In addition, it was confirmed that the sewage pipe length, elevation above sea level, slope, depth of landfill, and the risk of ground subsidence were affected in the order of sewage pipe information used as input variables. The results of this study are expected to be used as basic data for the preparation of a sinkhole susceptibility map and the establishment of an underground cavity exploration plan and a sewage pipe maintenance plan.