• Title/Summary/Keyword: performance-based optimization

Search Result 2,576, Processing Time 0.027 seconds

THE PERFORMANCE ANALYSIS OF A CIRCULATING WATER PUMP FOR A NUCLEAR POWER PLANT (원자력 발전소용 순환수 펌프의 성능해석)

  • Lee, M.S.;Han, B.Y.;Hwang, D.Y.;Yoo, S.S.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.69-75
    • /
    • 2009
  • The objective of this study is to investigate the suitable design for a domestic Circulating water pump(CWP), which is used in cooling-water intakes for the unit 3 and 4 of Yeonggwang nuclear power plant. All the simulations are performed, using CFD method with a commercial code STAR-CCM+ version 3.02. After modeling a present design of the pump, the flow around the rotating blade was calculated by using quasi-static method and sliding mesh method with the almost same condition as an actual state. Based on fundamental simulations with various depth of sea water, the reference pressure for the boundary condition of the present study was decided. To verify the reliability of the calculation results, the suction flow rate of the data was compared with that of the experimental data. As a result of this comparison, it is confirmed that two results are fairly consistent. For the improvement of the suction flow rate, computational analysis was done by changing a flow channel and blade shapes. It is shown that the suction flow rate of the new pump was improved.

Optimization Design on the Sealing Surface Profiles of Contacting Seal Units (접촉식 시일장치의 밀봉 접촉면 형상에 대한 최적화 설계연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.761-766
    • /
    • 2011
  • In this study, the optimized design profiles between a seal ring and a seal seat of contacting seal units has been proposed based on the FEM computed results. The maximum temperatures, the thermal distortions in axial and radial directions, and maximum contact normal stresses between a seal ring and a seal seat have been analyzed for various contact sealing profiles. The FEM computed results present that the contact area between seal rings and seal seats is very important for a good tribological performance such as low friction heating, low wear, high contact normal stress in a primary sealing components. The seal surface model III in which has a small sealing contact area shows low dilatation of primary sealing components, and high contact stress between a seal ring and a seal seat. This model with small contact surface of a seal ring produces high friction heating and contact stress. But the model III produces very small deformations of contacting sealing surface because of high convection heat transfer by cooling water circulation around the seal ring surface. Thus, the analysis results recommend a short width of a primary sealing unit rather than a big width of contact surfaces of contacting seal units for reducing a leakage and axial deformation of primary seal components.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.

Object Contour Tracking Using Optimization of the Number of Snake Points in Stereoscopic Images (스테레오 동영상에서 스네이크 포인트 수의 최적화를 이용한 객체 윤곽 추적 알고리즘)

  • Kim Shin-Hyoung;Jang Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.239-244
    • /
    • 2006
  • In this paper, we present a snake-based scheme for contour tracking of objects in stereo image sequences. We address the problem by managing the insertion of new points and deletion of unnecessary points to better describe and track the object's boundary. In particular, our method uses more points in highly curved parts of the contour, and fewer points in less curved parts. The proposed algorithm can successfully define the contour of the object, and can track the contour in complex images. Furthermore, we tested our algorithm in the presence of partial object occlusion. Performance of the proposed algorithm has been verified by simulation.

Delivering IPTV Service over a Virtual Network: A Study on Virtual Network Topology

  • Song, Biao;Hassan, Mohammad Mehedi;Huh, Eui-Nam
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.319-335
    • /
    • 2012
  • In this study, we design an applicable model enabling internet protocol television (IPTV) service providers to use a virtual network (VN) for IPTV service delivery. The model addresses the guaranteed service delivery, cost effectiveness, flexible control, and scalable network infrastructure limitations of backbone or IP overlay-based content networks. There are two major challenges involved in this research: i) The design of an efficient, cost effective, and reliable virtual network topology (VNT) for IPTV service delivery and the handling of a VN allocation failure by infrastructure providers (InPs) and ii) the proper approach to reduce the cost of VNT recontruction and reallocation caused by VNT allocation failure. Therefore, in this study, we design a more reliable virtual network topology for solving a single virtual node, virtual link, or video server failure. We develop a novel optimization objective and an efficient VN construction algorithm for building the proposed topology. In addition, we address the VN allocation failure problem by proposing VNT decomposition and reconstruction algorithms. Various simulations are conducted to verify the effectiveness of the proposed VNT, as well as that of the associated construction, decomposition, and reconstruction algorithms in terms of reliability and efficiency. The simulation results are compared with the findings of existing works, and an improvement in performance is observed.

On the QoS Behavior of Self-Similar Traffic in a Converged ONU-BS Under Custom Queueing

  • Obele, Brownson Obaridoa;Iftikhar, Mohsin;Kang, Min-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.286-297
    • /
    • 2011
  • A novel converged optical network unit (ONU)-base station (BS) architecture has been contemplated for next-generation optical-wireless networks. It has been demonstrated through high quality studies that data traffic carried by both wired and wireless networks exhibit self-similar and long range dependent characteristics; attributes that classical teletraffic theory based on simplistic Poisson models fail to capture. Therefore, in order to apprehend the proposed converged architecture and to reinforce the provisioning of tightly bound quality of service (QoS) parameters to end-users, we substantiate the analysis of the QoS behavior of the ONU-BS under self-similar and long range dependent traffic conditions using custom queuing which is a common queuing discipline. This paper extends our previous work on priority queuing and brings novelty in terms of presenting performance analysis of the converged ONU-BS under realistic traffic load conditions. Further, the presented analysis can be used as a network planning and optimization tool to select the most robust and appropriate queuing discipline for the ONU-BS relevant to the QoS requirements of different applications.

Optimal Design for Rule-Based Fuzzy Logic Controller Using GA (유전알고리즘을 이용한 규칙 기반)

  • No, Gi-Gap;Ju, Yeong-Hun;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.145-152
    • /
    • 1999
  • This paper presents an optimal design method for fuzzy logic controllers using genetic algorithms. In general, the design of fuzzy logic controllers has difficulties in the acquisition of exper's knowledge and relies to a great extent on empirical and heuristic knowledge which, in many cases, cannot be objectively justified. So, the performance of the controller can be degraded in the case of plant parameter variations or unpredictable incident which the designer may have ignored, and parameters of the fuzzy logic controller obtained by expert's control action may not be global. To solve these problems, the proposed method using genetic algorithms in this paper, can tune the parameters of fuzzy logic controller including scaling factors and determine the appropriate number of fuzzy reles systematically and automatically. We provide the second drder dead time plant and inverted pendulum system to evaluate the feasibility and generality of our proposed method. Comparison shows that the proposed controller can producd higher accuracy and a smaller number of fuzzy rules than manually tuned fuzzy logic controller.

  • PDF

Runoff estimation using modified adaptive neuro-fuzzy inference system

  • Nath, Amitabha;Mthethwa, Fisokuhle;Saha, Goutam
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.545-553
    • /
    • 2020
  • Rainfall-Runoff modeling plays a crucial role in various aspects of water resource management. It helps significantly in resolving the issues related to flood control, protection of agricultural lands, etc. Various Machine learning and statistical-based algorithms have been used for this purpose. These techniques resulted in outcomes with an acceptable rate of success. One of the pertinent machine learning algorithms namely Adaptive Neuro Fuzzy Inference System (ANFIS) has been reported to be a very effective tool for the purpose. However, the computational complexity of ANFIS is a major hindrance in its application. In this paper, we resolved this problem of ANFIS by incorporating one of the evolutionary algorithms known as Particle Swarm Optimization (PSO) which was used in estimating the parameters pertaining to ANFIS. The results of the modified ANFIS were found to be satisfactory. The performance of this modified ANFIS is then compared with conventional ANFIS and another popular statistical modeling technique namely ARIMA model with respect to the forecasting of runoff. In the present investigation, it was found that proposed PSO-ANFIS performed better than ARIMA and conventional ANFIS with respect to the prediction accuracy of runoff.

Simulation-based Optimum Allocation of a Resonator for Reducing the Blow Noise of a Turbocharger in a Diesel Engine (디젤 엔진에서의 터보 차저 Blow 소음 저감 위한 시뮬레이션 기반 공명기 위치 최적화)

  • Kang, Yong-Hun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2010
  • A diesel engine is equipped with a turbocharger for providing more power at a low engine speed region by supplying charge air to combustion chambers. The turbocharger makes it possible to satisfy stringent emission regulations and customers' demand of enjoying the fun to drive by increasing engine performance. However, the turbocharger has the disadvantage of making BPF(Blade Passing Frequency), hissing, surge, whistle, and blow noises. Among them, reducing the blow noise, a narrow-band noise(a general range : 1800~2000Hz), is possible by using a resonator that controls the narrow frequency band governing the resonance in the intake system. In this study, the optimum location of the resonator is found by employing Boost as a CAE(Computer Aided Engineering) tool and is confirmed by experiments of an engine dynamo test and a real vehicle test.