• Title/Summary/Keyword: performance-based optimization

Search Result 2,576, Processing Time 0.028 seconds

Study on Pressure Drop Optimization in Flow Channel with Two Diameters by Using Constructal Theory (형상법칙을 이용한 트리구조의 압력강하 최적화 연구)

  • Cho, Kee-Hyeon;Lee, Jae-Dal;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • An analytical study on the flow resistance of tree-shaped channel-flow architectures was carried out based on the principle of the constructal law; the evolutionary increase in the access to currents that flow through the channels with improvements in the flow configurations were studied in a square domain using two diameters. Two types of tree-shaped configurations were optimized. The minimized global flow resistance decreased steadily as the system size $N^2$ increased. From the two channel configurations, the one that resulted in better pressure drop was selected. Further, it was shown that the system performance can be enhanced by adopting the second tree-shaped configurations when the system size is greater than $18^2$.

Stereo Semi-direct Visual Odometry with Adaptive Motion Prior Weights of Lunar Exploration Rover (달 탐사 로버의 적응형 움직임 가중치에 따른 스테레오 준직접방식 비주얼 오도메트리)

  • Jung, Jae Hyung;Heo, Se Jong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.479-486
    • /
    • 2018
  • In order to ensure reliable navigation performance of a lunar exploration rover, navigation algorithms using additional sensors such as inertial measurement units and cameras are essential on lunar surface in the absence of a global navigation satellite system. Unprecedentedly, Visual Odometry (VO) using a stereo camera has been successfully implemented at the US Mars rovers. In this paper, we estimate the 6-DOF pose of the lunar exploration rover from gray images of a lunar-like terrains. The proposed algorithm estimates relative pose of consecutive images by sparse image alignment based semi-direct VO. In order to overcome vulnerability to non-linearity of direct VO, we add adaptive motion prior weights calculated from a linear function of the previous pose to the optimization cost function. The proposed algorithm is verified in lunar-like terrain dataset recorded by Toronto University reflecting the characteristics of the actual lunar environment.

Design of Steel Structures Using the Neural Networks with Improved Learning (개선된 인공신경망의 학습방법에 의한 강구조물의 설계)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.661-672
    • /
    • 2005
  • For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions

Optimizing Skyline Query Processing Algorithms on CUDA Framework (CUDA 프레임워크 상에서 스카이라인 질의처리 알고리즘 최적화)

  • Min, Jun;Han, Hwan-Soo;Lee, Sang-Won
    • Journal of KIISE:Databases
    • /
    • v.37 no.5
    • /
    • pp.275-284
    • /
    • 2010
  • GPUs are stream processors based on multi-cores, which can process large data with a high speed and a large memory bandwidth. Furthermore, GPUs are less expensive than multi-core CPUs. Recently, usage of GPUs in general purpose computing has been wide spread. The CUDA architecture from Nvidia is one of efforts to help developers use GPUs in their application domains. In this paper, we propose techniques to parallelize a skyline algorithm which uses a simple nested loop structure. In order to employ the CUDA programming model, we apply our optimization techniques to make our skyline algorithm fit into the performance restrictions of the CUDA architecture. According to our experimental results, we improve the original skyline algorithm by 80% with our optimization techniques.

A Genetic Algorithm for Guideway Network Design of Personal Rapid Transit (유전알고리즘을 이용한 소형궤도차량 선로네트워크 설계)

  • Won, Jin-Myung
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.101-117
    • /
    • 2007
  • In this paper, we propose a customized genetic algorithm (GA) to find the minimum-cost guideway network (GN) of personal rapid transit (PRT) subject to connectivity, reliability, and traffic capacity constraints. PRT is a novel transportation concept, where a number of automated taxi-sized vehicles run on an elevated GN. One of the most important problems regarding PRT is how to design its GN topology for given station locations and the associated inter-station traffic demands. We model the GN as a directed graph, where its cost, connectivity, reliability, and node traffics are formulated. Based on this formulation, we develop the GA with special genetic operators well suited for the GN design problem. Such operators include steady state selection, repair algorithm, and directed mutation. We perform numerical experiments to determine the adequate GA parameters and compare its performance to other optimization algorithms previously reported. The experimental results verify the effectiveness and efficiency of the proposed approach for the GN design problem having up to 210 links.

  • PDF

DESIGN OF A PWR POWER CONTROLLER USING MODEL PREDICTIVE CONTROL OPTIMIZED BY A GENETIC ALGORITHM

  • Na, Man-Gyun;Hwang, In-Joon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2006
  • In this study, the core dynamics of a PWR reactor is identified online by a recursive least-squares method. Based on the identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to designing an automatic controller for the thermal power control of PWR reactors. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, this procedure for solving the optimization problem is repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired temperature, as well as minimizing the variation of the control rod positions. In addition, the objectives are subject to the maximum and minimum control rod positions as well as the maximum control rod speed. Therefore, a genetic algorithm that is appropriate for the accomplishment of multiple objectives is utilized in order to optimize the model predictive controller. A three-dimensional nuclear reactor analysis code, MASTER that was developed by the Korea Atomic Energy Research Institute (KAERI) , is used to verify the proposed controller for a nuclear reactor. From the results of a numerical simulation that was carried out in order to verify the performance of the proposed controller with a $5\%/min$ ramp increase or decrease of a desired load and a $10\%$ step increase or decrease (which were design requirements), it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

Development of Multiphase Pump for Offshore Plant (해양플랜트용 다상유동 펌프 개발)

  • Kim, Joonhyung;Choi, Youngseok;Yoon, Joonyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.183-190
    • /
    • 2014
  • A multiphase pump was developed in this study. The optimum multiphase pump design was arrived at, and the interactions among the different geometric configurations were explained by applying numerical analysis and the DOE (design of experiments) method. First, we designed the base model to meet the specifications. Then, we defined the design parameters related to the meridional plane and the blade angle. Each design parameter was used for generating experiment sets, and numerical analyses were performed on these sets. Finally, the optimized design was selected based on the results of the DOE analysis. The numerical optimization resulted in the optimum model having higher efficiency than the base model. In addition, performance degradation due to changes in the GVF (gas volume fraction) is discussed.

Effectiveness Optimization for Metro-Style Graphical User Interfaces (Metro 스타일 GUI의 가시화 효율 최적화)

  • Kim, Kangtae;Kim, Kihyuk;Lee, Sungkil
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.12
    • /
    • pp.670-675
    • /
    • 2014
  • Graphical user interfaces (GUI) in modern software deliver information visually, and a well-designed interface can provide information to the use in an organized and intuitive manner while poorly-designed interfaces can cause visual inconvenience and confusion. In order to effectively deliver information to the user, visual attention should be placed on a prominent location in the image. This paper introduces a method based on a human visual system (HVS) that can improve Metro-style GUIs by reducing a user's workload to visually find information. Our method is designed with spatial mapping and color mapping for buttons in the Metro-style GUI. Also we define a metric for Metro-style GUI effectiveness, including an optimization algorithm. The results show that our method improves the performance of visual search tasks in a Metro-style GUI.

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

  • Oveisi, Atta;Sukhairi, T. Arriessa;Nestorovic, Tamara
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.643-658
    • /
    • 2018
  • In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new product's costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.

A Study on Distributed Particle Swarm Optimization Algorithm with Quantum-infusion Mechanism (Quantum-infusion 메커니즘을 이용한 분산형 입자군집최적화 알고리즘에 관한 연구)

  • Song, Dong-Ho;Lee, Young-Il;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.527-531
    • /
    • 2012
  • In this paper, a novel DPSO-QI (Distributed PSO with quantum-infusion mechanism) algorithm improving one of the fatal defect, the so-called premature convergence, that degrades the performance of the conventional PSO algorithms is proposed. The proposed scheme has the following two distinguished features. First, a concept of neighborhood of each particle is introduced, which divides the whole swarm into several small groups with an appropriate size. Such a strategy restricts the information exchange between particles to be done only in each small group. It thus results in the improvement of particles' diversity and further minimization of a probability of occurring the premature convergence phenomena. Second, a quantum-infusion (QI) mechanism based on the quantum mechanics is introduced to generate a meaningful offspring in each small group. This offspring in our PSO mechanism improves the ability to explore a wider area precisely compared to the conventional one, so that the degree of precision of the algorithm is improved. Finally, some numerical results are compared with those of the conventional researches, which clearly demonstrates the effectiveness and reliability of the proposed DPSO-QI algorithm.