• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.034 seconds

Neighbor Generation Strategies of Local Search for Permutation-based Combinatorial Optimization

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.27-35
    • /
    • 2021
  • Local search has been used to solve various combinatorial optimization problems. One of the most important factors in local search is the method of generating a neighbor solution. In this paper, we propose neighbor generation strategies of local search for permutation-based combinatorial optimization, and compare the performance of each strategies targeting the traveling salesman problem. In this paper, we propose a total of 10 neighbor generation strategies. Basically, we propose 4 new strategies such as Rotation in addition to the 4 strategies such as Swap which have been widely used in the past. In addition, there are Combined1 and Combined2, which are made by combining basic neighbor generation strategies. The experiment was performed by applying the basic local search, but changing only the neighbor generation strategy. As a result of the experiment, it was confirmed that the performance difference is large according to the neighbor generation strategy, and also confirmed that the performance of Combined2 is the best. In addition, it was confirmed that Combined2 shows better performance than the existing local search methods.

Regional Science and Technology Resource Allocation Optimization Based on Improved Genetic Algorithm

  • Xu, Hao;Xing, Lining;Huang, Lan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1972-1986
    • /
    • 2017
  • With the advent of the knowledge economy, science and technology resources have played an important role in economic competition, and their optimal allocation has been regarded as very important across the world. Thus, allocation optimization research for regional science and technology resources is significant for accelerating the reform of regional science and technology systems. Regional science and technology resource allocation optimization is modeled as a double-layer optimization model: the entire system is characterized by top-layer optimization, whereas the subsystems are characterized by bottom-layer optimization. To efficaciously solve this optimization problem, we propose a mixed search method based on the orthogonal genetic algorithm and sensitivity analysis. This novel method adopts the integrated modeling concept with a combination of the knowledge model and heuristic search model, on the basis of the heuristic search model, and simultaneously highlights the effect of the knowledge model. To compare the performance of different methods, five methods and two channels were used to address an application example. Both the optimized results and simulation time of the proposed method outperformed those of the other methods. The application of the proposed method to solve the problem of entire system optimization is feasible, correct, and effective.

Design of Hybrid Magnetic Levitation System using Intellignet Optimization Algorithm (지능형 최적화 기법 이용한 하이브리드 자기부상 시스템의 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1782-1791
    • /
    • 2017
  • In this paper, an optimal design of hybrid magnetic levitation(Maglev) system using intelligent optimization algorithms is proposed. The proposed maglev system adopts hybrid suspension system with permanent-magnet(PM) and electro magnet(EM) to reduce the suspension power loss and the teaching-learning based optimization(TLBO) that can overcome the drawbacks of conventional intelligent optimization algorithm is used. To obtain the mathematical model of hybrid suspension system, the magnetic equivalent circuit including leakage fluxes are used. Also, design restrictions such as cross section areas of PM and EM, the maximum length of PM, magnetic force are considered to choose the optimal parameters by intelligent optimization algorithm. To meet desired suspension power and lower power loss, the multi object function is proposed. To verify the proposed object function and intelligent optimization algorithms, we analyze the performance using the mean value and standard error of 10 simulation results. The simulation results show that the proposed method is more effective than conventional optimization methods.

Optimization Design for Dynamic Characters of Electromagnetic Apparatus Based on Niche Sorting Multi-objective Particle Swarm Algorithm

  • Xu, Le;You, Jiaxin;Yu, Haidan;Liang, Huimin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.660-665
    • /
    • 2016
  • The electromagnetic apparatus plays an important role in high power electrical systems. It is of great importance to provide an effective approach for the optimization of the high power electromagnetic apparatus. However, premature convergence and few Pareto solution set of the optimization for electromagnetic apparatus always happen. This paper proposed a modified multi-objective particle swarm optimization algorithm based on the niche sorting strategy. Applying to the modified algorithm, this paper guarantee the better Pareto optimal front with an enhanced distribution. Aiming at shortcomings in the closing bounce and slow breaking velocity of electromagnetic apparatus, the multi-objective optimization model was established on the basis of the traditional optimization. Besides, by means of the improved multi-objective particle swarm optimization algorithm, this paper processed the model and obtained a series of optimized parameters (decision variables). Compared with other different classical algorithms, the modified algorithm has a satisfactory performance in the multi-objective optimization problems in the electromagnetic apparatus.

A Continuous Optimization Algorithm Using Equal Frequency Discretization Applied to a Fictitious Play (동일 빈도 이산화를 가상 경기에 적용한 연속형 최적화 알고리즘)

  • Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • In this paper, we proposed a new method for the determination of strategies that are required in a continuous optimization algorithm based on the fictitious play theory. In order to apply the fictitious play theory to continuous optimization problems, it is necessary to express continuous values of a variable in terms of discrete strategies. In this paper, we proposed a method in which all strategies contain an equal number of selected real values that are sorted in their magnitudes. For comparative analysis of the characteristics and performance of the proposed method of representing strategies with respect to the conventional method, we applied the method to the two types of benchmarking functions: separable and inseparable functions. From the experimental results, we can infer that, in the case of the separable functions, the proposed method not only outperforms but is more stable. In the case of inseparable functions, on the contrary, the performance of the optimization depends on the benchmarking functions. In particular, there is a rather strong correlation between the performance and stability regardless of the benchmarking functions.

Structural Design of a Front Lower Control Arm Considering Durability (내구성을 고려한 하부 컨트롤 암의 구조설계)

  • Park, Han-Seok;Kim, Jong-Kyu;Seo, Sun-Min;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.69-75
    • /
    • 2009
  • Recently developed automotive components are getting lighter providing a higher fuel efficiency and performance. Following the current trend, this study proposes a structural optimization method for the lower control arm installed at the front side of a Vehicle. Lightweight design of lower control arm can be achieved through design and material technology. In this research, the shape of lower control arm was determined by applying the optimization technology and aluminum was selected as a steel-substitute material. Strength performance is the most important design requirement in the structural design of a control arm. This study considers the static strength in the optimization process. For the optimum design, the durability analysis is performed to predict its fatigue life. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. Optimum designs are obtained by the in-house program, EXCEL-Kriging. Also, based on the optimum model obtained for the static strength, the optimization of Index of Fatigue Durability is carried out to get th optimum fatigue performance.

  • PDF

Network Selection Algorithm for Heterogeneous Wireless Networks Based on Multi-Objective Discrete Particle Swarm Optimization

  • Zhang, Wenzhu;Kwak, Kyung-Sup;Feng, Chengxiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1802-1814
    • /
    • 2012
  • In order to guide users to select the most optimal access network in heterogeneous wireless networks, a network selection algorithm is proposed which is designed based on multi-objective discrete particle swarm optimization (Multi-Objective Discrete Particle Swarm Optimization, MODPSO). The proposed algorithm keeps fast convergence speed and strong adaptability features of the particle swarm optimization. In addition, it updates an elite set to achieve multi-objective decision-making. Meanwhile, a mutation operator is adopted to make the algorithm converge to the global optimal. Simulation results show that compared to the single-objective algorithm, the proposed algorithm can obtain the optimal combination performance and take into account both the network state and the user preferences.

Vibration Based Structural Damage Detection Technique using Particle Swarm Optimization with Incremental Swarm Size

  • Nanda, Bharadwaj;Maity, Damodar;Maiti, Dipak Kumar
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • A simple and robust methodology is presented to determine the location and amount of crack in beam like structures based on the incremental particle swarm optimization technique. A comparison is made for assessing the performance of standard particle swarm optimization and the incremental particle swarm optimization technique for detecting crack in structural members. The objective function is formulated using the measured natural frequency of the intact structure and the frequency obtained from the finite element simulation. The outcomes of the simulated results demonstrate that the developed method is capable of detecting and estimating the extent of damages with satisfactory precision.

Evaluation of Two Lagrangian Dual Optimization Algorithms for Large-Scale Unit Commitment Problems

  • Fan, Wen;Liao, Yuan;Lee, Jong-Beom;Kim, Yong-Kab
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • Lagrangian relaxation is the most widely adopted method for solving unit commitment (UC) problems. It consists of two steps: dual optimization and primal feasible solution construction. The dual optimization step is crucial in determining the overall performance of the solution. This paper intends to evaluate two dual optimization methods - one based on subgradient (SG) and the other based on the cutting plane. Large-scale UC problems with hundreds of thousands of variables and constraints have been generated for evaluation purposes. It is found that the evaluated SG method yields very promising results.

A Study for Robustness of Objective Function and Constraints in Robust Design Optimization

  • Lee Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1662-1669
    • /
    • 2006
  • Since randomness and uncertainties of design parameters are inherent, the robust design has gained an ever increasing importance in mechanical engineering. The robustness is assessed by the measure of performance variability around mean value, which is called as standard deviation. Hence, constraints in robust optimization problem can be approached as probability constraints in reliability based optimization. Then, the FOSM (first order second moment) method or the AFOSM (advanced first order second moment) method can be used to calculate the mean values and the standard deviations of functions describing constraints and object. Among two methods, AFOSM method has some advantage over FOSM method in evaluation of probability. Nevertheless, it is difficult to obtain the mean value and the standard deviation of objective function using AFOSM method, because it requires that the mean value of function is always positive. This paper presented a special technique to overcome this weakness of AFOSM method. The mean value and the standard deviation of objective function by the proposed method are reliable as shown in examples compared with results by FOSM method.