• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.034 seconds

A Study on the Robust Design Using Kriging Surrogate Models (크리깅 근사모델을 이용한 강건설계에 관한 연구)

  • Lee, Kwon-Hee;Cho, Yong-Chul;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.870-875
    • /
    • 2004
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, the robust design strategy is developed based on the DACE and the global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the system. The robustness is determined by the DACE model to reduce the real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

  • PDF

Maintenance Planning for Deteriorating Bridge using Preference-based Optimization Method (선호도기반 최적화방법을 이용한 교량의 유지보수계획)

  • Lee, Sun-Young;Koh, Hyun-Moo;Park, Wonsuk;Kim, Hyun-Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.223-231
    • /
    • 2008
  • This research presents a new maintenance planning method for deteriorating bridges considering simultaneously the minimization of the maintenance cost and maximization of the bridge performance. Optimal maintenance planning is formulated as a multi-objective optimization problem that treats the maintenance cost as well as the bridge performance such as the condition grade of the bridge deck, girder and pier. To effectively address the multi-objective optimization problem and decision making process for the obtained solution set, we apply a genetic algorithm as a numerical searching technique and adopt a preference-based optimization method. A numerical example for a typical 5-span prestressed concrete girder bridge shows that the maintenance cost and the performance of the bridge can be balanced reasonably without severe trade-offs between each objectives.

PSSs and SVC Damping Controllers Design to Mitigate Low Frequency Oscillations Problem in a Multi-machine Power System

  • Darabian, Mohsen;Jalilvand, Abolfazl
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1873-1881
    • /
    • 2014
  • This paper deals with the design of multi-machine power system stabilizers (PSSs) and Static var compensator (SVC) using Modified shuffled frog leaping algorithm (MSFLA). The effectiveness of the proposed scheme for optimal setting of the PSSs and SVC controllers has been attended. The PSSs and SVC controllers designing is converted to an optimization problem in which the speed deviations between generators are involved. In order to compare the capability of PSS and SVC, they are designed independently once, and in a coordinated mode once again. The proposed method is applied on a multi-machine power system under different operating conditions and disturbances to confirm the effectiveness of it. The results of tuned PSS controller based on MSFLA (MSFLAPSS) and tuned SVC controller based on MSFLA (MSFLA SVC) are compared with the Strength pareto evolutionary algorithm (SPEA) and Particle swarm optimization (PSO) based optimized PSS and SVC through some performance to reveal its strong performance.

Basic Study on Performance Comparison of Structural Optimization Software Systems (구조최적설계 소프트웨어의 성능 비교에 대한 기초연구)

  • Choi, Wook Han;Huang, Cheng Guo;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1403-1413
    • /
    • 2014
  • Structural optimization is widely accepted in industrial fields. Structural optimization pursues improved performance of the structures. Recently, structural optimization is actively utilized due to the well-developed commercial design software systems. Three popular commercial structural optimization systems are investigated and compared. They are MSC.Nastran, Genesis and OptiStruct. The performance of the systems is analyzed based on the quality of the optimum solution and the computational time. Linear static response size, shape and topology optimizations are explored and compared with some test examples. For fair comparison, the systems are run in the same environment and the optimization parameters affecting the performance are unified. The optimization results are analyzed and the performances and characteristics of each software system are discussed.

Design of Model-based VCU Software for Driving Performance Optimization of Electric Vehicle

  • Changkyu Lee;Youngho Koo;Kwangnam Park;Gwanhyung Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.351-358
    • /
    • 2023
  • This study designed a model-based Vehicle Control Unit (VCU) software for electric vehicles. Electric vehicles have transitioned from conventional powertrains (e.g., engines and transmissions) to electric powertrains. The primary role of the VCU is to determine the optimal torque for driving control. This decision is based on the driver's power request and current road conditions. The determined torque is then transmitted to the electric drive system, which includes motors and controllers. The VCU employs an Artificial Neural Network (ANN) and calibrated reference torque to enhance the electric vehicle's performance. The designed VCU software further refines the final reference torque by comparing the control logic with the torque calculation functions and ANN-generated reference torque. Vehicle tests confirmed the effective optimization of vehicle performance using the model-based VCU software, which includes an ANN.

Optimal design of an electro-pneumatic automatic transfer system

  • Um, Taijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.71-75
    • /
    • 1994
  • This paper presents a method of optimal design of an automatic transfer system which is controlled by the electro-pneumatic servo scheme. The electro-pneumatic automatic transfer system can move parts to desired points or displace defective parts. The dynamic performance of the system can be examined by observing the behavior of the output. The output of the servo control system is the motion of the cylinder, pneumatic actuator. The dynamic performance of the cylinder is governed by the parameters of the components of the entire system. The optimal design can be accomplished by selecting of the parameters such that the desired dynamic performance of the cylinder is obtained. The optimal set of parameters might be obtained through the repeated simulations. Repeated simulations, however, is not effective to determine the optimal set of parameters since the set of parameters is large. This paper presents modeling, application of an optimization method, and the numerical results. The optimization algorithm utilizes the concept of the conjugate gradient method. The results show that the suggested optimization scheme can render faster convergence of iteration compared to other method based on an algebraic optimization method and can reduce the design efforts.

  • PDF

Performance Enhancement of Speaker Identification in Noisy Environments by Optimization Membership Function Based on Particle Swarm (Particle Swarm 기반 최적화 멤버쉽 함수에 의한 잡음 환경에서의 화자인식 성능향상)

  • Min, So-Hee;Song, Min-Gyu;Na, Seung-You;Kim, Jin-Young
    • Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.105-114
    • /
    • 2007
  • The performance of speaker identifier is severely degraded in noisy environments. A study suggested the concept of observation membership for enhancing performances of speaker identifier with noisy speech [1]. The method scaled observation probabilities of input speech by observation identification values decided by SNR. In the paper [1], the authors suggested heuristic parameter values for membership function. In this paper we attempt to apply particle swarm optimization (PSO) for obtaining the optimal parameters for speaker identification in noisy environments. With the speaker identification experiments using the ETRI database we prove that the optimization approach can yield better performance than using only the original membership function.

  • PDF

A Study for the Reliability Based Design Optimization of the Automobile Suspension Part (자동차 현가장치 부품에 대한 신뢰성 기반 최적설계에 관한 연구)

  • 이종홍;유정훈;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2004
  • The automobile suspension system is composed of parts that affect performances of a vehicle such as ride quality, handling characteristics, straight performance and steering effort, etc. Moreover, by using the finite element analysis the cost for the initial design step can be decreased. In the design of a suspension system, usually system vibration and structural rigidity must be considered simultaneously to satisfy dynamic and static requirements simultaneously. In this paper, we consider the weight reduction and the increase of the first eigen-frequency of a suspension part, the upper control arm, especially using topology optimization and size optimization. Firstly, we obtain the initial design to maximize the first eigen-frequency using topology optimization. Then, we apply the multi-objective parameter optimization method to satisfy both the weight reduction and the increase of the first eigen-frequency. The design variables are varying during the optimization process for the multi-objective. Therefore, we can obtain the deterministic values of the design variables not only to satisfy the terms of variation limits but also to optimize the two design objectives at the same time. Finally, we have executed reliability based optimal design on the upper control arm using the Monte-Carlo method with importance sampling method for the optimal design result with 98% reliability.

A Global Robust Optimization Using the Kriging Based Approximation Model (크리깅 근사모델을 이용한 전역적 강건최적설계)

  • Park Gyung-Jin;Lee Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1243-1252
    • /
    • 2005
  • A current trend of design methodologies is to make engineers objectify or automate the decision-making process. Numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, the Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, a design procedure for global robust optimization is developed based on the kriging and global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. Robustness is determined by the DACE model to reduce real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. As the postprocess, the first order second-moment approximation method is applied to refine the robust optimum. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.