• Title/Summary/Keyword: performance-based earthquake engineering

Search Result 656, Processing Time 0.03 seconds

Comparative investigation of the costs and performances of torsional irregularity structures under seismic loading according to TEC

  • Gursoy, Senol
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.405-417
    • /
    • 2014
  • The poor seismic performance of reinforced concrete buildings during the latest earthquakes has become a serious issue in the building industry in Turkey. This case, designing new buildings without structural irregularities against earthquake loads reveals to be quite significant. This study mainly is focused on the effects of different torsional irregularities on construction costs and earthquakes performance of reinforced concrete buildings. In that respect, structural torsional irregularities are investigated based on the Turkish Earthquake Code. The study consists of major eight main parametric models. In this models consist of totally 49 models together with the variations in the number of storey. With this purpose, the earthquake performances and construction costs (especially steel quantities) of reinforced concrete buildings which having different structural torsional irregularities were obtained with the help of Sta4-CAD program. Each model has been analyzed by both the methods of equivalent earthquake loading and dynamic analysis. The obtained results reveal that the model-1 which has lower torsional irregularity coefficient shows the best earthquake performance owing to its regular plan geometry. Also, economical comparisons on costs of the torsional irregularity are performed, and results-recommendations are given.

Performance-Based Seismic Design of High-rise Apartment Buildings in Korea Considering Collapse Prevention Level (붕괴방지 수준을 고려한 국내 고층 아파트의 성능기반 내진설계)

  • Lee, Minhee;Yoo, Changhwan;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.181-190
    • /
    • 2016
  • The objective of this study is to apply performance-based seismic design to high-rise apartment buildings in Korean considering collapse prevention level. The possible issues during its application were studied and the suggestions were made based on the findings from the performance-based seismic design of a building with typical residential multi-unit layout. The lateral-force-resisting system of the building is ordinary shear walls system with a code exception of height limit. In order to allow the exception, the serviceability and the stability of the ordinary shear wall structure need to be evaluated to confirm that it has the equivalent performance as the one designed under the Korean Building Code 2009. The structure was evaluated whether it satisfied its performance objectives to withstand Service Level and Maximum Considered Earthquake.

Investigation on economical method of foundation construction on soft soils in seismic zones: A case study in southern Iran

  • Javad Jalili;Farajdollah Askari;Ebrahim Haghshenas;Azadeh Marghaiezadeh
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.209-232
    • /
    • 2023
  • A comprehensive study was conducted to design economical foundations for a number of buildings on soft cohesive soil in the southern coastal regions of Iran. Both static and seismic loads were considered in the design process. Cyclic experiments indicated that the cohesive soil of the area has potential for softening. Consequently, the major challenge in the design stages was relatively high dimensions of settlement, under both static and seismic loadings. Routine soil-improvement methods were too costly for the vast area of the project. After detailed numerical modeling of different scenarios, we concluded that, in following a performance-based design approach and applying a special time schedule of construction, most of the settlement would dissipate during the construction of the buildings. Making the foundation as rigid as possible was another way to prevent any probable differential settlement. Stiff subgrade of stone and lime mortar under the grid foundation and a reinforced concrete slab on the foundation were considered as appropriate to this effect. In favor of an economical design, in case the design earthquake strikes the site, the estimations indicate no collapse of the buildings even if considerable uniform settlements may occur. This is a considerable alternative design to costly soil-improvement methods.

Seismic performance assessments of precast energy dissipation shear wall structures under earthquake sequence excitations

  • Zhang, Hao;Li, Chao;Wang, Zhi-Fang;Zhang, Cai-Yan
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.147-162
    • /
    • 2020
  • This paper presents a novel precast energy dissipation shear wall (PEDSW) structure system that using mild steel dampers as dry connectors at the vertical joints to connect adjacent wall panels. Analytical studies are systematically conducted to investigate the seismic performance of the proposed PEDSW under sequence-type ground motions. During earthquake events, earthquake sequences have the potential to cause severe damage to structures and threaten life safety. To date, the damage probability of engineering structures under earthquake sequence has not been included in structural design codes. In this study, numerical simulations on single-story PEDSW are carried out to validate the feasibility and reliability of using mild steel dampers to connect the precast shear walls. The seismic responses of the PEDSW and cast-in-place shear wall (CIPSW) are comparatively studied based on nonlinear time-history analyses, and the effectiveness of the proposed high-rise PEDSW is demonstrated. Next, the foreshock-mainshock-aftershock type earthquake sequences are constructed, and the seismic response and fragility curves of the PEDSW under single mainshock and earthquake sequences are analyzed and compared. Finally, the fragility analysis of PEDSW structure under earthquake sequences is performed. The influences of scaling factor of the aftershocks (foreshocks) to the mainshocks on the fragility of the PEDSW structure under different damage states are investigated. The numerical results reveal that neglecting the effect of earthquake sequence can lead to underestimated seismic responses and fragilities, which may result in unsafe design schemes of PEDSW structures.

Seismic Design Method for Structural Walls Based on Energy Dissipation Capacity (에너지 소산능력을 고려한 전단벽의 내진설계)

  • 박홍근;엄태성;정연희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.247-257
    • /
    • 2002
  • Recently, performance-based analysis/design methods such as the capacity spectrum method and the direct displacement-based design method were developed. In these methods, the estimation of energy dissipation capacity due to inelastic behavior of RC structures depends on empirical equations which are not sufficiently accurate. On the other hand, in a recent study, a simplified method for evaluating energy dissipation capacity was developed. In the present study, based on the evaluation method, a new seismic design method for flexure-dominated RC walls is developed. In determination of seismic earthquake load, the proposed design method can address variation of the energy dissipation capacity with design parameters such as dimensions and shapes of cross-sections, axial force, and reinforcement ratio and arrangement. The proposed design method is compared with the current performance-based design methods and the applicability of the proposed method is disscussed.

  • PDF

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou;Heisha, Wenliuhan;Yanhui, Liu;Zhipeng, Zhai;Chongbin, Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.407-417
    • /
    • 2023
  • Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

Introduction of the Building Standard Law of Japan and the Performance-Based Seismic Design Methodology (일본의 내진설계법 및 내진성능 평가법의 소개)

  • 전대한;노필성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.341-348
    • /
    • 2002
  • This manuscript introduces the Building Standard Law of Japan revised at 2000, June. Recently, The Building Standard Law of Japan was revised into the performance-based design format following the trend of international. The structural performance was evaluated for two limiting states; serviceability and soundness limit state, and safety limit state. The design earthquake forces were determined on the basis of seismic activities of the construction site, taking into consideration (a)characteristics of focal mechanism, (b)amplification by local surfaces geology, and (c)soil-structure interaction, in addition to the properties of the planned building including scale, configuration, foundation system, and structural characteristics.

  • PDF

Seismic Performance Evaluation of Building Structures Using Modified Capacity Spectrum (수정된 능력스펙트럼을 이용한 건축구조물의 내진성능평가)

  • 최원호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.267-274
    • /
    • 2000
  • Current seismic design codes for building structures are based on the method which can provide enough capacity to satisfy objected performance level and exactly evaluate the seismic performance of buildings. The capacity spectrum method using the nonlinear static(pushover) analysis is becoming a popular tool for evaluating the seismic performance of existing and new building structures. By means of a graphical procedure capacity spectrum method esimates the performance level of structure by comparing the capacity of structure with the demand of earthquake ground motion on the structure. In the method the relation between base shear estimated by a nonlinear static analysis and horizontal displacement is used. Capacity spectrum is usually expressed as what represent the responses of the equivalent single degree of freedom (ESDOF) system for the building structures. However there are some problems in converting procedures into ESDOF system which include not considering the effect of higher modes of structures. The objective of this paper is to compare and verify existing methods and suggest the modified capacity spectrum for seismic performance evaluation of building structures.

  • PDF

Spectrum Analysis of Seismic Responses of a Building during an Earthquake (지진 시 콘크리트 합성 빌딩 내 지진 거동의 스펙트럼 해석)

  • Kaloop, Mosbeh R.;Choi, Seok-Jun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • This study presents the design and implementation of a structural health monitoring system based on acceleration measurements which used to observe and investigate the structural performance of the administration building in Seoul National University of Education during an earthquake event. The frequency and spectrum are analyzed to assess the building performance during an earthquake shaking which took place on March 31st, 2014. The results indicate that : the vibration of the roof is more clear and dominant during the shaking, and the response of building during earthquake is so small and safe.