In the present study, we investigated development of verb inflections or endings in 3- to 5-year old Korean-speaking children using 28 action verbs for both comprehension and production tasks. For each verb, a l0-second long motion picture and a sheet of paper with three random-ordered color pictures representing 'before, in the middle of, at the end of' the action were generated. A past tense inflection' -et ta,' two present progressive verb endings '-enta' & '-ko itta.' a future tense ending '-elyeko hanta' were tested. In the comprehension task, children were asked to point to a picture correctly representing the tense of a presented verb. In the production task, children were asked to produce a verb with correctly marking the tense of a presented picture. The order of the two tasks were counterbalanced across the children, and the motion pictures were only presented in the first task. Across the ages, the performance accuracies on both comprehension and production tasks were the highest for the past tense marking followed by two present progressive and future tense markings. For each verb endings, the changes of accuracies across ages were analyzed in both tasks. The types of errors for production tasks were also reported.
The vast number of biomedical literature is an important source of biomedical interaction information discovery. However, it is complicated to obtain interaction information from them because most of them are not easily readable by machine. In this paper, we present a method for extracting biomedical interaction information assuming that the biomedical Named Entities (NEs) are already identified. The proposed method labels all possible pairs of given biomedical NEs as INTERACTION or NO-INTERACTION by using a Maximum Entropy (ME) classifier. The features used for the classifier are obtained by applying various NLP techniques such as POS tagging, base phrase recognition, parsing and predicate-argument recognition. Especially, specific verb predicates (activate, inhibit, diminish and etc.) and their biomedical NE arguments are very useful features for identifying interactive NE pairs. Based on this, we devised a twostep method: 1) an interaction verb extraction step to find biomedically salient verbs, and 2) an argument relation identification step to generate partial predicate-argument structures between extracted interaction verbs and their NE arguments. In the experiments, we analyzed how much each applied NLP technique improves the performance. The proposed method can be completely improved by more than 2% compared to the baseline method. The use of external contextual features, which are obtained from outside of NEs, is crucial for the performance improvement. We also compare the performance of the proposed method against the co-occurrence-based and the rule-based methods. The result demonstrates that the proposed method considerably improves the performance.
영상 데이터에 대한 시맨틱 정보를 정확하게 이해하는 것은 인공지능 및 기계학습 분야에서 가장 어려운 도전과제의 하나로 알려져 있다. 본 논문에서는 동영상 시맨틱 이해를 위한 시각 동사 도출과 이를 바탕으로 하는 동영상 데이터베이스인 액션넷 데이터베이스 구축에 관해 제안하고 있다. 오늘날 인공지능 기술의 눈부신 발달에는 인공지능 알고리즘의 발전이 크게 기여하였지만 알고리즘의 학습과 성능 평가를 위한 방대한 데이터베이스의 제공도 기여한 바가 매우 크다고 할 수 있다. 인공지능이 도전하기 어려운 분야였던 시각 정보 처리에 있어서도 정지 영상 내의 객체인식에 있어서는 인간의 수준을 능가하기 시작하면서 점차 동영상에서의 내용에 대한 시맨틱 이해 기술 개발로 발전하고 있다. 본 논문에서는 이러한 동영상 이해를 위한 학습 및 테스트 데이터베이스로서 액션넷 구축에 요구되는 시각 동사의 후보를 도출한다. 이를 위해 언어학 기반의 동사 분류체계를 살펴보고, 영상에서의 시각 정보를 명세한 데이터 및 언어학에서의 시각 동사 빈도 등으로부터 시각 동사의 후보를 도출한다. 시각 동사 분류체계와 시각 동사후보를 바탕으로 액션넷 데이터베이스 스키마를 정의하고 구축한다. 본 논문에서 제안하는 시각 동사 및 스키마와 이를 바탕으로 하는 액션넷 데이터베이스를 개방형 환경에서 확장하고 활용성을 제고함으로써 동영상 이해 기술 발전에 기여할 수 있을 것으로 기대한다.
동형이의어는 여러 가지 의미를 가진 단어를 의미한다. 문장의 의미를 이해하기 위해서는 필수적으로 문장에 포함된 동형이의어의 의미를 결정해야 한다. 기존의 단어 의미 중의성 연구들은 공기 빈도를 기반으로 해결하였다. 하지만, 동사의 경우에는 정확도 향상을 위해서 격 정보가 중요하다. 왜냐하면, 동사 동형이의어의 의미는 행위의 주체나 객체에 따라 결정되어서 종속격(목적격, 부사격, 보격) 정보가 필요하며, 동사동형이의어 의미마다 서로 다른 격 정보가 필요하기 때문이다. 본 논문에서는 한국어 격 정보를 적용한 동사 의미 중의성 해소를 제안한다. 격정보는 표준국어대사전에 명시된 조사 정보를 이용하였다. 실험은 고빈도 동형이의어 12개를 대상으로 하였으며, 실험결과 정확도가 기존의 97.3%에서 98.7%로 1.34% 향상되었다. 이는 원래의 오류율을 2.7%에서 1.3%으로 절반정도 줄였다.
본 논문에서는 합성곱 구문 트리 커널(convolution parse tree kernel)과, 한 문장에서 나타나는 두 개체 간의 관계를 가장 잘 설명하는 동사 상당어구에 대한 개념화를 통해 생성되는 워드넷 신셋 벡터(WordNet synsets vector) 커널을 활용하여 과학기술분야 전문용어 간의 관계 추출을 시도하였다. 본 논문에서 적용한 모델의 성능 평가를 위해서 세 가지 검증 컬렉션을 활용하였으며, 각각의 컬렉션 마다 기존의 접근 방법론 보다 우수한 성능을 보여주었다. 특히 KREC 2008 컬렉션을 대상으로 한 성능 실험에서는, 기존의 합성곱 구문 트리 커널과 동사 신셋 벡터(verb synsets vector)를 함께 적용한 합성 커널이 비교적 높은 성능 향상(8% F1)을 나타내고 있다. 이는 성능을 높이기 위해서 관계 추출에서 많이 활용하였던 개체 자질 정보와 더불어 개체 주변에 존재하는 주변 문맥 정보(동사 및 동사 상당어구)도 매우 유용한 정보임을 입증하고 있다.
최근 웹 문서 뿐만 아니라 신문기사에서도 미드(미국드라마)나 안습(안구에 습기차다)와 같은 신조어를 사용하고 있다. 그러나, 사전에 등록되지 않은 이러한 단어는 한국어 분석기의 성능을 떨어뜨리는 주요인이 된다. 이러한 미등록어를 자동으로 인식하기 위해서, 본 논문에서는 전문분석 기반 미등록 명사 인식 단계, 웹 출현빈도 기반 미등록 용언 인식 단계, 웹 출현빈도 기반 미등록 명사 인식단계로 구성된 단계별 접근방법을 제안한다. 제안하는 방법은 문서에서 여러 번 나타난 미등록어를 정확하게 인식할 수 있도록 전문분석 기반 단계를 포함한다. 한편, 문서에 한번 나타난 미등록어도 광범위하게 인식할 수 있도록 웹 출현 빈도 기반 단계도 포함한다. 그리고, 다양한 한국어 미등록어를 인식하기 위해서 미등록 명사 인식 단계와 미등록 용언 인식 단계를 구분한다. 실험결과 기존 접근방법에 비해 제안하는 접근방법은 정확률 1.01%와 재현율 8.50%를 개선하였다.
This paper proposes a convolution tree kernel-based approach for relation extraction where the parse tree is expanded with entity features such as entity type, subtype, and mention level etc. Our study indicates that not only can our method effectively capture both syntactic structure and entity information of relation instances, but also can avoid the difficulty with tuning the parameters in composite kernels. We also demonstrate that predicate verb information can be used to further improve the performance, though its enhancement is limited. Evaluation on the ACE2004 benchmark corpus shows that our system slightly outperforms both the previous best-reported feature-based and kernel-based systems.
본 연구는 우리나라 수학과 교육과정 성취기준에 포함된 수행 동사를 추출하여 그 실태를 파악하고 개선 방안을 탐색하는 데 목적이 있다. 이를 위해 먼저 현행 수학과 교육과정인 2015 개정 수학과 교육과정 성취기준에 포함된 수행 동사가 학교급별로 차이가 있는지를 분석하였다. 또 우리나라 수학과 교육과정 성취기준에 포함된 수행 동사가 다른 국가의 수학과 교육과정 성취기준에 포함된 수행 동사와 차이가 있는지도 살펴보았다. 분석 결과 우리나라 2015 개정 수학과 교육과정 성취기준에 포함된 수행 동사는 학교급이 올라갈수록 빈도와 종수가 모두 적어지는 것을 볼 수 있었다. 외국의 수학과 교육과정에서도 유사한 경향성은 보였으나 우리나라에서는 '이해하다', '알다'가 지나치게 많이 사용되어 개선이 필요하다.
본 논문에서는 지도학습 알고리즘에 기반한 한국어 타동사의 어의 애매성 해결을 위한 통계적방법을 제안한다. 본 논문에서 제안한 어의 애매성 해결 방법은 주어진 동사와 문맥 내에서 이들 동사의 주변 단어들과의 구문적 관계에 기반한 지시자들을 결합한 방법이다. 비교적 애매성이 심한 한국어 타동사 10개에 대한 어의 애매성 해결 실험 결과, 구문 관계에 기반한 지시자를 사용한 어의 애매성 해결 방법이 기준 정확도 성능 평가보다 27%의 정확도 성능 개선을 보였으며, 지시자 유형에 대해 가중치를 부여한 방법이 문맥 내에 무순서적인 주변 단어에 대한 정보만을 사용하는 방법에 비해 12% 정확도 성능 개선을 보였다.
한국어 의미역 결정(Semantic Role Labeling)은 주로 기계학습에 의해 이루어지며 많은 말뭉치 자원을 필요로 한다. 그러나 한국어 의미역 결정 시스템에 사용되는 Korean PropBank는 의미역이 부착된 용언과 용언 격틀이 PropBank에 비해 각각 1/5, 1/2 수준에 불과하다. 따라서 본 논문에서는 한국어 의미역 결정 시스템을 위해 의미역이 부착된 용언과 용언 격틀을 확장하여 Korean PropBank를 확장 시키고자 한다. 대부분의 의미역 결정 시스템은 학습 도메인에 의존적이기 때문에 적용 도메인 변경에 따른 성능 하락이 나타날 수 있다. 본 논문에서는 기존의 학습 말뭉치와 적은 양의 새로운 학습 말뭉치를 활용하여 새로운 도메인에 대해 의미역 결정 시스템의 성능 하락을 최소화 할 수 있는 도메인 적응 기술을 Structural SVM(S-SVM)과 Deep Neural Network(DNN) 기반 한국어 의미역 결정 시스템에 적용하여 그 실효성을 알아보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.