• 제목/요약/키워드: performance rubber bearing

검색결과 109건 처리시간 0.023초

자기민감 고무를 이용한 구조물의 면진성능 연구 (A Study on Base Isolation Performance of Magneto-Sensitive Rubbers)

  • 황인호;임종혁;이종세
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.77-84
    • /
    • 2006
  • 최근 들어 지진발생 빈도의 증가와 더불어 초고층 빌딩, 장대교량 등과 같은 대형구조물의 경량화, 유연화로 인해 발생하는 구조물의 과도한 동적거동을 효과적으로 제어할 수 있는 제진시스템의 필요성이 증가하고 있다. 본 연구에서는 지진으로부터 구조물을 보다 효과적으로 보호하기 위해 자기장에 의해 역학적 성질을 변화시킬 수 있는 제어가 가능한 지능형재료인 자기민감 고무(Magneto-Sensitive Rubber)를 이용한 반 능동 기초격리 시스템을 제안하였다. 제안된 기초격리 시스템은 기존의 LRB(Lead-Rubber Bearing) 시스템과의 비교 분석을 통해 면진성능을 평가하였으며 이를 위해 몇 가지 역사적 지진들을 이용수치해석을 수행하였다. 제안된 자기민감 고무를 이용한 반 능동 기초격린 시스템은 기존의 수동 시스템보다 기초전단력이나 상부구조물에 가속도 전달을 차단함과 동시에 기초변위를 현저하게 감소시킬 수 있음을 보였다. 그러므로 자가민감 고무를 이용한 반 능동 기초격리 시스템은 지진으로부터 구조물을 효과적으로 보호할 수 있을 것으로 사료된다.

지진격리 구조물의 지진모니터링 시스템 개발 (The Development of Seismic Monitoring for a Base-Isolated Building System)

  • 김성훈;조대승;박해동;김두훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.247-251
    • /
    • 2001
  • Nowadays, base isolation systems such as lead-rubber bearing, elastomer bearing and sliding bearing have been installed to the various structures to prevent the disaster from seismic. The performance of base isolation system have been well proved by model-scale experiments and numerical analysis. However. the seismic response data measured at real large base-isolated structures is still insufficient. This paper presents a seismic monitoring system, acquiring real-time acceleration signals up to 32 channels, displaying time history and spectrum of the signals, storing the acquired data at a PC hard disk, and replaying the saved data. Moreover, the system can be operated without any limitation for monitoring period by automatic management of stored data file. The developed system has been installed at a real base-isolated building using lead-rubber bearings and we expect its seismic response data with ground motion signal can be well licquired in case of earthquake occurrence.

  • PDF

디스크 받침용 고무패드의 거동 및 강성추정 (The Behavior and Estimated Stiffness Rubber Pad for Disk Bearing)

  • 조성철;최은수;박주남;김만철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.599-605
    • /
    • 2009
  • The aim of the present study is the characteristics of bridge rubber pads and suggested how to determine the stiffness the pads. A disk bearing is operated as an elastic bearing in the vertical direction and is composed of a Polyether Urethane (polyurethane) disk for elastic support and Polytetrafluoroethylene (PTFE) to accommodate movement. Static tests are conducted in a laboratory to determine the static behavior of a Polyurethane disk. Finite Element (FE) analysis is also performed to verify the static performance. For dynamic behavior, four disk bearings having the identical Polyurethane disk used in the static tests are installed in a full size railway bridge and tested under a running locomotive. From the tests results, the static and dynamic stiffness of disk bearings are estimated and compared with each other. In the procedure to estimate the stiffness of a pad, the dead load(pre-load) of a bridge and live load of a vehicle are considered.

  • PDF

철골 구조물의 제진 및 면진성능 (Damping and Isolation Performance of Steel Structure)

  • 윤현도;박완신;한병찬;황선경;이규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.221-230
    • /
    • 2004
  • 본 논문에서는 지진하중 작용시, 점탄성 감쇠기 및 면진장치를 설치한 다층 철골 모멘트 저항 골조의 동적응답을 해석적으로 규명하였다. 본 연구의 목적은 구조해석을 수행하여 최대 층간변위 및 최대응력법에 의해 효율적인 점탄성 감쇠기의 위치를 결정하는 것이다. 또한, 효율적인 진동 제어방법을 모색하기 위하여 점탄성 감쇠기 및 납삽입고무베어링형 면진장치에 의한 제어효과를 부재력, 조합응력, 그리고 구조물의 고유주기 등을 이용하여 상호 비교 분석하였다.

등가선형 및 이선형 납-고무받침 모델을 적용한 면진된 원전구조물의 지진 취약도 해석 (Seismic Fragility Analysis of Seismically Isolated Nuclear Power Plant Structures using Equivalent Linear- and Bilinear-Lead Rubber Bearing Model)

  • 이진희;송종걸
    • 한국지진공학회논문집
    • /
    • 제19권5호
    • /
    • pp.207-217
    • /
    • 2015
  • In order to increase seismic performance of nuclear power plant (NPP) in strong seismic zone, lead-rubber bearing (LRB) can be applied to seismic isolation system of NPP structures. Simple equivalent linear model as structural analysis model of LRB is more widely used in initial design process of LRB than a bilinear model. Seismic responses for seismically isolated NPP containment structures subjected to earthquakes categorized into 5 different soil-site classes are calculated by both of the equivalent linear- and bilinear- LRB models and compared each others. It can be observed that the maximum displacements of LRB and shear forces of containment in the case of the equivalent linear LRB model are larger than those in the case of bilinear LRB model. From the seismic fragility curves of NPP containment structures isolated by LRB, it can be observed that seismic fragility in the case of equivalent linear LRB model are about 5~30 % larger than those in the case of bilinear LRB model.

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • 제26권5호
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

자동차용 횔베어링의 기동토크와 밀봉성을 고려한 립 씰의 형상 설계에 관한 연구 (Study on Geometry Design of Lip-Seal for Automobile Wheel Bearing Considering Drag Torque and Sealing Performance)

  • 허영민;이광오;심태양;강성수
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.10-16
    • /
    • 2007
  • A rubber seal for wheel bearing which has been mainly applied to car wheel supporting device is required to have both high sealing performance and drag torque. Because of severe operational conditions like infiltration of mud or splashed water, the importance of rubber seal which is aimed for leakage prevention of grease and effective blocking of foreign substances has been increasing continuously. The sealing performance of this seal depends on several factors such as materials of seal, friction conditions of contact regions and geometry of seals and so on. We have focused on the effects of geometric characteristics such as the angle of main lip, interference between lip edge and inner metallic ring. In this study, the optimization of geometric variables was performed using the finite element analysis. For the sake of finite element analysis, uniaxial tensile tests were conducted and several constants for Mooney-Rivlin's equation were obtained. According to the results of this study, mock-up bearing was made. To verify this study, drag torque and mud spray test were preformed.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

납고무받침을 이용한 스테인리스 물탱크 내진성능에 관한 해석적 연구 (A Analytical Study on Seismic Performance of Stainless Water Tank using Lead Rubber Bearing)

  • 김후승;오주;정희영
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.230-236
    • /
    • 2018
  • 최근 국내에서도 규모 5.0 이상의 지진이 발생하여 구조물의 내진 안전성에 대한 관심이 증가하고 있다. 특히, 물을 저장하는 시설은 지진에 의해 손상 및 파손이 될 경우, 누수로 식수 및 용수가 부족하게 될 뿐만 아니라 화재 진압의 어려움이 야기되므로 지진에 대한 안전성을 만족하여야 한다. 본 연구에서는 기초와 탱크사이에 납고무받침을 고려하여 지진에 대한 물탱크의 내진성능을 향상시키고자 한다. 이를 위해 기존 콘크리트 기초에 설치 가능하도록 납고무받침을 설계하였다. 물탱크에 대하여 유체-구조물 상호작용을 고려하기 위하여 ANSYS를 활용하여 모델링을 수행하였으며 정수압과 4개의 지진파를 이용한 동수압을 고려하였다. 만수위 2.5m의 정수압이 작용하는 경우에 대하여 정적 해석을 수행한 결과, 면진 적용여부와 상관없이 동일한 응력이 발생하였다. 정수압과 동수압을 동시에 고려했을 때, 면진 물탱크는 전반적으로 지진력 감소가 이루어졌지만 일반적인 구조면진과 비교했을 때 감쇠율이 다소 낮은 것으로 나타났다. 이는 물탱크 중량이 면진 강성보다 매우 작아서 나타난 결과로 판단되며, 향후 물탱크 내진성능 평가에 기초 자료로 활용될 것으로 기대된다.