Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology (기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론)
-
- Journal of Intelligence and Information Systems
- /
- v.24 no.1
- /
- pp.101-124
- /
- 2018
Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.
The
Service failure is one of the major reasons for customer defection. As the business environment gets tougher and more competitive, a single service failure might bring about fatal consequences to a service provider or a firm. Sometimes a failure won't end up with an unsatisfied customer's simple complaining but with a wide-spread animosity against the service provider or the firm, leading to a threat to the firm's survival itself in the society. Therefore, we are in need of comprehensive understandings of complainants' attitudes and behaviors toward service failures and firm's recovery efforts. Even though a failure itself couldn't be fixed completely, marketers should repair the mind and heart of unsatisfied customers, which can be regarded as an successful recovery strategy in the end. As the outcome of recovery efforts exerted by service providers or firms, recovery of the relationship between customer and service provider need to put on the top in the recovery goal list. With these motivations, the study investigates how service failure and recovery makes the changes in dynamics of fundamental elements of customer-firm relationship, such as customer affection, customer trust and loyalty intention by comparing two time points, before the service failure and after the recovery, focusing on the effects of recovery satisfaction and the failure severity. We adopted La & Choi (2012)'s framework for development of the research model that was based on the previous research stream like Yim et al. (2008) and Thomson et al. (2005). The pivotal background theories of the model are mainly from relationship marketing and social relationships of social psychology. For example, Love, Emotional attachment, Intimacy, and Equity theories regarding human relationships were reviewed. As the results, when recovery satisfaction is high, customer affection and customer trust that were established before the service failure are carried over to the future after the recovery. However, when recovery satisfaction is low, customer-firm relationship that had already established in the past are not carried over but broken up. Regardless of the degree of recovery satisfaction, once a failure occurs loyalty intention is not carried over to the future and the impact of customer trust on loyalty intention becomes stronger. Such changes imply that customers become more prudent and more risk-aversive than the time prior to service failure. The impact of severity of failure on customer affection and customer trust matters only when recovery satisfaction is low. When recovery satisfaction is high, customer affection and customer trust become severity-proof. Interestingly, regardless of the degree of recovery satisfaction, failure severity has a significant negative influence on loyalty intention. Loyalty intention is the most fragile target when a service failure occurs no matter how severe the failure criticality is. Consequently, the ultimate goal of service recovery should be the restoration of customer-firm relationship and recovery of customer trust should be the primary objective to accomplish for a successful recovery performance. Especially when failure severity is high, service recovery should be perceived highly satisfied by the complainants because failure severity matters more when recovery satisfaction is low. Marketers can implement recovery strategies to enhance emotional appeals as well as fair treatments since the both impacts of affection and trust on loyalty intention are significant. In the case of high severity of failure, recovery efforts should be exerted to overreach customer expectation, designed to directly repair customer trust and elaborately designed in the focus of customer-firm communications during the interactional recovery process to affect customer trust rebuilding indirectly. Because it is a longer and harder way to rebuild customer-firm relationship for high severity cases, low recovery satisfaction cannot guarantee customer retention. To prevent customer defection due to service failure of high severity, unexpected rewards as a recovery will be likely to be useful since those will lead to customer delight or customer gratitude toward the service firm. Based on the results of analyses, theoretical and managerial implications are presented. Limitations and future research ideas are also discussed.
Objective : There are four possible explanations for the sexual dysfunction of schizophrenics. The first is the possibility of a real structural aspect. The second possibility is that sexual function changes secondary to the illness. The third possibility is that there are medical and sociocultural barriers to sexual expression for chronic schizophrenics. The fourth possibility is that sexual dysfunction due to antipsychotic medication. However, we didn't know the precise cause of sexual dysfunction in schizophrenics. Therefore, the purpose of this study was to explore the mechanism of illness itself and antipsychotics on sexual dysfunction in male schizophrenics. Methods : The serum prolactin(PRL), testosterone(TST), and the plasma serotonin(5-HT) concentrations were measured by radioimmunoassay and high performance liquid chromatography method for 100 healthy male schizophrenics according to the DSM-IV. Concomitantly, the severity of psychotic symptoms using Clinical Global Impression(CGI), Brief Psychiatric Rating Scale(BPRS), Positive and Negative Syndrome Scale(PANSS), and the severity of side effects for antipsychotics using Extrapyramidal Side Effects Scale(EPSE), Anticholinergic Side Effects Scale(ACSE), the cognitive function using PANSS-Cognitive Function(PANSS-CF), Mini Mental State Exam-Korean(MMSE-K), and the sexual dysfunction using Sexual Functioning Questionnaire(SFQ), Questionnaire for Sexual Dysfunction in Men were assessed. The PRL, TST, and 5-HT levels of 50 healthy male controls who had no medical, neurological, and psychiatric illnesses were evaluated. The sexual function using SFQ(items FGa, FNa) were also assessed. Furthermore, the correlation with age, education, religion, economic status, age at onset, duration of illnesses, duration of admission, levels of PRL, TST, 5-HT, antipsychotic dosages, potency, benztropine, total duration of medication, EPSE, ACSE, CGI, BPRS, PANSS, PANSS-CF, MMSE-K and sexual dysfunctions were identified in male schizophrenics. Results : 1) The frequencies of sexual dysfunctions for schizophrenics(80%) were significantly(p<0.001) higher than those for controls(42%). The sexual dysfunctions according to sexual response cycle were 'low sexual desire' 76%, 'impairment of achieving erection' 75%, 'impairment of maintaining erection' 75%, 'impairment of obtaining orgasm' 32%, 'impairment in the quality of orgasm' 61%, 'impairment in quantity of ejaculate' 44%, 'premature ejaculation' 15%, and 'delayed ejaculation' 50%. 2) The PRL, 5-HT levels of schizophrenics(
To train the manpower to meet the requirements of the industrial field, the introduction of the National Qualification Frameworks(hereinafter referred to as NQF) was determined in 2001 by National Competency Standards(hereinafter referred to as NCS) centrally of the Office for Government Policy Coordination. Also, for landscape architecture in the construction field, the "NCS -Landscape Architecture" pilot was developed in 2008 to be test operated for 3 years starting in 2009. Especially, as the 'realization of a competence-based society, not by educational background' was adopted as one of the major government projects in the Park Geun-Hye government(inaugurated in 2013) the NCS system was constructed on a nationwide scale as a detailed method for practicing this. However, in the case of the NCS developed by the nation, the ideal job performing abilities are specified, therefore there are weaknesses of not being able to reflect the actual operational problem differences in the student level between universities, problems of securing equipment and professors, and problems in the number of current curricula. For soft landing to practical curriculum, the process of clearly analyzing the gap between the current curriculum and the NCS must be preceded. Gap analysis is the initial stage methodology to reorganize the existing curriculum into NCS based curriculum, and based on the ability unit elements and performance standards for each NCS ability unit, the discrepancy between the existing curriculum within the department or the level of coincidence used a Likert scale of 1 to 5 to fill in and analyze. Thus, the universities wishing to operate NCS in the future measuring the level of coincidence and the gap between the current university curriculum and NCS can secure the basic tool to verify the applicability of NCS and the effectiveness of further development and operation. The advantages of reorganizing the curriculum through gap analysis are, first, that the government financial support project can be connected to provide quantitative index of the NCS adoption rate for each qualitative department, and, second, an objective standard is provided on the insufficiency or sufficiency when reorganizing to NCS based curriculum. In other words, when introducing in the subdivisions of the relevant NCS, the insufficient ability units and the ability unit elements can be extracted, and the supplementary matters for each ability unit element per existing subject can be extracted at the same time. There is an advantage providing directions for detailed class program and basic subject opening. The Ministry of Education and the Ministry of Employment and Labor must gather people from the industry to actively develop and supply the NCS standard a practical level to systematically reflect the requirements of the industrial field the educational training and qualification, and the universities wishing to apply NCS must reorganize the curriculum connecting work and qualification based on NCS. To enable this, the universities must consider the relevant industrial prospect and the relation between the faculty resources within the university and the local industry to clearly select the NCS subdivision to be applied. Afterwards, gap analysis must be used for the NCS based curriculum reorganization to establish the direction of the reorganization more objectively and rationally in order to participate in the process evaluation type qualification system efficiently.
With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.
Service failure and a poor service recovery may lead loyal customers to try to aggressively punish the service firm. We use perceived betrayal and desire for vengeance as the key constructs to understand customer retaliation. Perceived betrayal is defined as a customer's belief that a firm has intentionally violated what is normative in the context of their relationship. And the desire for vengeance is defined as the retaliatory feelings that consumers feel toward a firm, such as the desire to exert harm on the firm. The perceived betrayal and the desire for vengeance are key antecedents of retaliatory behaviors such as vindictive complaining, negative WOM and third-party complaining for publicity. The empirical results suggest that betrayal is a key motivational factor that lead customers to restore fairness by making use of all means, including retaliation. We also find that relationship quality has effect on a customer's response to a failure in service recovery. As the levels of relationship increases, a violation of the proper fairness has a stronger effect on the sense of betrayal experienced by customers. Considerable research has investigated consumer responses to dissatisfaction. But our study examine the response of outraged and highly frustrated consumers. We focus on emotional and behavioral processes that have not been covered by previous dissatisfaction researches and which are unique to outraged consumers caused by extremely dissatisfied purchase experience. It has recently been pointed out by various mass media that the customers not only have positive effects on the company performance but also put the company in crisis. It has often been reported that one customer's dissatisfaction, for example, never ends as it is, and it tends to grow for retaliating upon the company, depending on the level of seriousness of the dissatisfaction. This sometimes leads to a lawsuit against the company. Our study focuses on the customers' emotional and behavioral responses induced by their extreme dissatisfactions. We divided the customer groups into the customers with high relationship quality and the customers with low relationship quality, and the difference between two groups is examined. The objective of this study is to comprehend the causal relationship between the feeling of betrayal caused by the service failure and the retaliatory behavior triggered by the desire of revenge. Our study is divided into three parts. First, a causal relationship between perceived unfairness and the perceived betrayal and desire for revenge. Second, the effect of the perceived betrayal and desire for revenge on the retaliatory behavior is investigated. Finally, the moderating role of relationship quality in the causal relationship between the unfairness in service recovery and the perceived betrayal is analyzed. This study finds the following empirical results. The distributive unfairness, procedural unfairness and interactional unfairness had significant effects on the perceived betrayal. Especially, the perceived distributive unfairness results in the highest perceived betrayal. When the service company does not provide customers proper and sufficient compensation for the failure, they feel the strong sense of betrayal. And in the causal relationship between the perceived betrayal, desire for revenge and retaliatory behavior, the perceived betrayal has significant effects on e desire for revenge. In addition desire for revenge has significant effects on negative word of mouth, retaliatory complaining behavior and publicity of complaints through third group. Therefore the perceived unfairness has effects on retaliatory behavior through the mediation of the perceived betrayal and desire for revenge. Finally the moderating role of relationship quality was examined in the relationship between the unfairness and perceived betrayal. If the customers experienced the perceived unfairness in the process of service recovery, the customers with high relationship quality feel the stronger perceived betrayal than the customers with low relationship quality do. When they experience the double service failure, the customer group with high relationship quality accumulating the sense of trust feel the more perceived betrayal than the customer with low relationship quality who do not have strong trust. The contribution of this study is to find the effect of the service failure on the retaliatory behavior with the moderating roles of relationship quality. The dimensions of unfairness in service recovery is found to have differential effects on the perceived betrayal, desire for revenge. And these differential effect is moderated by the level of relationship quality.
Objective: This study aimed to empirically evaluate the effectiveness of chronic disease management services utilizing ICT for patients with chronic illnesses. Methods: From May to December, 2023, 452 people who were diagnosed with hypertension and diabetes at 9 participating public health centers were provided with customized health care services for 24 weeks, and 15 performance indicators were analyzed to evaluate their effectiveness. Results: Health behavior indicators and health risk factors decreased before and after participation in the project, blood pressure control rate, hypertension and diabetes management rate, medication compliance, weight, BMI, BP, WC, FBG, and HDL-cholesterol improved(p<0.001). Service factors that influence the improvement of health behaviors included the number of activity monitor transmissions(p=0.049), confirmed concentrated consultations on physical activity(p=0.003) and nutrition(p=0.005), and the adherence to medication missions for hypertension(p=0.020). As for service factors influencing chronic disease management, the improvement in blood pressure regulation rate was due to the number of times the blood pressure monitor was linked(p=0.004), and the number of confirmed intensive consultations on physical activity(p=0.026), and nutrition(p=0.049); the improvement in hypertension control rate was due to the number of times the activity monitor and blood pressure monitor were linked(p<0.001), and the number of hypertension medication missions carried out (p=0.004); and the improvement in diabetes control rate was due to the number of times the blood pressure monitor(p=0.022) and blood sugar system were linked(p=0.017). Conclusion: Although this study has limitations as a comparative study before and after the service, it has proved that chronic disease management using ICT has a positive effect on improvement of health behavior indicator, reduction of health risk factors, hypertension, diabetes management index, weight, BMI, TG, BP, FBG improvement.
This project was a service-cum-research effort with a quasi-experimental study design to examine the health benefits of an integrated Family Planning (FP)/Maternal & Child health (MCH) Service approach that provides crucial factors missing in the present on-going programs. The specific objectives were: 1) To test the effectiveness of trained nurse/midwives (MW) assigned as change agents in the Health Sub-Center (HSC) to bring about the changes in the eight FP/MCH indicators, namely; (i)FP/MCH contacts between field workers and their clients (ii) the use of effective FP methods, (iii) the inter-birth interval and/or open interval, (iv) prenatal care by medically qualified personnel, (v) medically supervised deliveries, (vi) the rate of induced abortion, (vii) maternal and infant morbidity, and (viii) preinatal & infant mortality. 2) To measure the integrative linkage (contacts) between MW & HSC workers and between HSC and clients. 3) To examine the organizational or administrative factors influencing integrative linkage between health workers. Study design; The above objectives called for quasi-experimental design setting up a study and control area with and without a midwife. An active intervention program (FP/MCH minimum 'package' program) was conducted for a 2 year period from June 1982-July 1984 in Seosan County and 'before and after' surveys were conducted to measure the change. Service input; This study was undertaken by the Soonchunhyang University in collaboration with WHO. After a baseline survery in 1981, trained nurses/midwives were introduced into two health sub-centers in a rural setting (Seosan county) for a 2 year period from 1982 to 1984. A major service input was the establishment of midwifery services in the existing health delivery system with emphasis on nurse/midwife's role as the link between health workers (nurse aids) and village health workers, and the referral of risk patients to the private physician (OBGY specialist). An evaluation survey was made in August 1984 to assess the effectiveness of this alternative integrated approach in the study areas in comparison with the control area which had normal government services. Method of evaluation; a. In this study, the primary objective was first to examine to what extent the FP/MCH package program brought about changes in the pre-determined eight indicators (outcome and impact measures) and the following relationship was first analyzed; b. Nevertheless, this project did not automatically accept the assumption that if two or more activities were integrated, the results would automatically be better than a non-integrated or categorical program. There is a need to assess the 'integration process' itself within the package program. The process of integration was measured in terms of interactive linkages, or the quantity & quality of contacts between workers & clients and among workers. Intergrative linkages were hypothesized to be influenced by organizational factors at the HSC clinic level including HSC goals, sltrurture, authority, leadership style, resources, and personal characteristics of HSC staff. The extent or degree of integration, as measured by the intensity of integrative linkages, was in turn presumed to influence programme performance. Thus as indicated diagrammatically below, organizational factors constituted the independent variables, integration as the intervening variable and programme performance with respect to family planning and health services as the dependent variable: Concerning organizational factors, however, due to the limited number of HSCs (2 in the study area and 3 in the control area), they were studied by participatory observation of an anthropologist who was independent of the project. In this observation, we examined whether the assumed integration process actually occurred or not. If not, what were the constraints in producing an effective integration process. Summary of Findings; A) Program effects and impact 1. Effects on FP use: During this 2 year action period, FP acceptance increased from 58% in 1981 to 78% in 1984 in both the study and control areas. This increase in both areas was mainly due to the new family planning campaign driven by the Government for the same study period. Therefore, there was no increment of FP acceptance rate due to additional input of MW to the on-going FP program. But in the study area, quality aspects of FP were somewhat improved, having a better continuation rate of IUDs & pills and more use of effective Contraceptive methods in comparison with the control area. 2. Effects of use of MCH services: Between the study and control areas, however, there was a significant difference in maternal and child health care. For example, the coverage of prenatal care was increased from 53% for 1981 birth cohort to 75% for 1984 birth cohort in the study area. In the control area, the same increased from 41% (1981) to 65% (1984). It is noteworthy that almost two thirds of the recent birth cohort received prenatal care even in the control area, indicating that there is a growing demand of MCH care as the size of family norm becomes smaller 3. There has been a substantive increase in delivery care by medical professions in the study area, with an annual increase rate of 10% due to midwives input in the study areas. The project had about two times greater effect on postnatal care (68% vs. 33%) at delivery care(45.2% vs. 26.1%). 4. The study area had better reproductive efficiency (wanted pregancies with FP practice & healthy live births survived by one year old) than the control area, especially among women under 30 (14.1% vs. 9.6%). The proportion of women who preferred the 1st trimester for their first prenatal care rose significantly in the study area as compared to the control area (24% vs 13%). B) Effects on Interactive Linkage 1. This project made a contribution in making several useful steps in the direction of service integration, namely; i) The health workers have become familiar with procedures on how to work together with each other (especially with a midwife) in carrying out their work in FP/MCH and, ii) The health workers have gotten a feeling of the usefulness of family health records (statistical integration) in identifying targets in their own work and their usefulness in caring for family health. 2. On the other hand, because of a lack of required organizational factors, complete linkage was not obtained as the project intended. i) In regards to the government health worker's activities in terms of home visiting there was not much difference between the study & control areas though the MW did more home visiting than Government health workers. ii) In assessing the service performance of MW & health workers, the midwives balanced their workload between 40% FP, 40% MCH & 20% other activities (mainly immunization). However,
The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.