• Title/Summary/Keyword: performance objective

Search Result 5,781, Processing Time 0.031 seconds

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Comparison of SureTectTM with phenotypic and genotypic method for the detection of Salmonella spp. and Listeria monocytogenes in ready-to-eat foods (즉석섭취식품에 존재하는 Salmonella spp.와 Listeria monocytogenes의 검출을 위한 SureTectTM와 표현형 및 유전자형 방법의 비교)

  • Kye-Hwan Byun;Byoung Hu Kim;Ah Jin Cho;Eun Her;Sunghee Yoon;Taeik Kim;Sang-Do Ha
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.262-271
    • /
    • 2023
  • The objective of this study is to compare and assess the effectiveness of real-time polymerase chain reaction (RT-PCR), loop-mediated isothermal amplification (LAMP), and the selective agar plate method for the detection of Salmonella spp. and Listeria monocytogenes in ready-to-eat (RTE) foods. In RTE foods, the detection performance of the three methods (RT-PCR [SureTectTM kit and PowerChekTM kit], LAMP [3M MDS], selective agar) were similar at 0-10, 10-50, 50-100, and 100- CFU/mL of Salmonella spp. and L. monocytogenes. We found that with RT-PCR, the Ct value of salad was significantly higher (p<0.05) than other RTE foods, indicating that fiber plays a critical role as an obstacle to the rapid detection of Salmonella spp. However, the Ct value displayed a mixed pattern according to the inoculation level of L. monocytogenes. The use of rapid detection kits and machines mostly depends on the user's choice, with accuracy, ease of use, and economy being the primary considerations. As an RT-PCR kit, SureTectTM and PowerChekTM showed high accuracy in detecting Salmonella spp. and L. monocytogenes in RTE foods, showing that they can replace the existing RT-PCR kits available. Additionally, LAMP also showed excellent detection performance, suggesting that it has the potential to be used as a food safety management tool.

Diagnosis of Unruptured Intracranial Aneurysms Using Proton-Density Magnetic Resonance Angiography: A Comparison With High-Resolution Time-of-Flight Magnetic Resonance Angiography

  • Pae Sun Suh;Seung Chai Jung;Hye Hyeon Moon;Yun Hwa Roh;Yunsun Song;Minjae Kim;Jungbok Lee;Keum Mi Choi
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.575-588
    • /
    • 2024
  • Objective: Differentiating intracranial aneurysms from normal variants using CT angiography (CTA) or MR angiography (MRA) poses significant challenges. This study aimed to evaluate the efficacy of proton-density MRA (PD-MRA) compared to high-resolution time-of-flight MRA (HR-MRA) in diagnosing aneurysms among patients with indeterminate findings on conventional CTA or MRA. Materials and Methods: In this retrospective analysis, we included patients who underwent both PD-MRA and HR-MRA from August 2020 to July 2022 to assess lesions deemed indeterminate on prior conventional CTA or MRA examinations. Three experienced neuroradiologists independently reviewed the lesions using HR-MRA and PD-MRA with reconstructed voxel sizes of 0.253 mm3 or 0.23 mm3, respectively. A neurointerventionist established the gold standard with digital subtraction angiography. We compared the performance of HR-MRA, PD-MRA (0.253-mm3 voxel), and PD-MRA (0.23-mm3 voxel) in diagnosing aneurysms, both per lesion and per patient. The Fleiss kappa statistic was used to calculate inter-reader agreement. Results: The study involved 109 patients (average age 57.4 ± 11.0 years; male:female ratio, 11:98) with 141 indeterminate lesions. Of these, 78 lesions (55.3%) in 69 patients were confirmed as aneurysms by the reference standard. PD-MRA (0.253-mm3 voxel) exhibited significantly higher per-lesion diagnostic performance compared to HR-MRA across all three readers: sensitivity ranged from 87.2%-91.0% versus 66.7%-70.5%; specificity from 93.7%-96.8% versus 58.7%-68.3%; and accuracy from 90.8%-92.9% versus 63.8%-69.5% (P ≤ 0.003). Furthermore, PD-MRA (0.253-mm3 voxel) demonstrated significantly superior per-patient specificity and accuracy compared to HR-MRA across all evaluators (P ≤ 0.013). The diagnostic accuracy of PD-MRA (0.23-mm3 voxel) surpassed that of HR-MRA and was comparable to PD-MRA (0.253-mm3 voxel). The kappa values for inter-reader agreements were significantly higher in PD-MRA (0.820-0.938) than in HR-MRA (0.447-0.510). Conclusion: PD-MRA outperformed HR-MRA in diagnostic accuracy and demonstrated almost perfect inter-reader consistency in identifying intracranial aneurysms among patients with lesions initially indeterminate on CTA or MRA.

Combining Non-Contrast CT Signs With Onset-to-Imaging Time to Predict the Evolution of Intracerebral Hemorrhage

  • Lei Song;Xiaoming Qiu;Cun Zhang;Hang Zhou;Wenmin Guo;Yu Ye;Rujia Wang;Hui Xiong;Ji Zhang;Dongfang Tang;Liwei Zou;Longsheng Wang;Yongqiang Yu;Tingting Guo
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.166-178
    • /
    • 2024
  • Objective: This study aimed to determine the predictive performance of non-contrast CT (NCCT) signs for hemorrhagic growth after intracerebral hemorrhage (ICH) when stratified by onset-to-imaging time (OIT). Materials and Methods: 1488 supratentorial ICH within 6 h of onset were consecutively recruited from six centers between January 2018 and August 2022. NCCT signs were classified according to density (hypodensities, swirl sign, black hole sign, blend sign, fluid level, and heterogeneous density) and shape (island sign, satellite sign, and irregular shape) features. Multivariable logistic regression was used to evaluate the association between NCCT signs and three types of hemorrhagic growth: hematoma expansion (HE), intraventricular hemorrhage growth (IVHG), and revised HE (RHE). The performance of the NCCT signs was evaluated using the positive predictive value (PPV) stratified by OIT. Results: Multivariable analysis showed that hypodensities were an independent predictor of HE (adjusted odds ratio [95% confidence interval] of 7.99 [4.87-13.40]), IVHG (3.64 [2.15-6.24]), and RHE (7.90 [4.93-12.90]). Similarly, OIT (for a 1-h increase) was an independent inverse predictor of HE (0.59 [0.52-0.66]), IVHG (0.72 [0.64-0.81]), and RHE (0.61 [0.54-0.67]). Blend and island signs were independently associated with HE and RHE (10.60 [7.36-15.30] and 10.10 [7.10-14.60], respectively, for the blend sign and 2.75 [1.64-4.67] and 2.62 [1.60-4.30], respectively, for the island sign). Hypodensities demonstrated low PPVs of 0.41 (110/269) or lower for IVHG when stratified by OIT. When OIT was ≤ 2 h, the PPVs of hypodensities, blend sign, and island sign for RHE were 0.80 (215/269), 0.90 (142/157), and 0.83 (103/124), respectively. Conclusion: Hypodensities, blend sign, and island sign were the best NCCT predictors of RHE when OIT was ≤ 2 h. NCCT signs may assist in earlier recognition of the risk of hemorrhagic growth and guide early intervention to prevent neurological deterioration resulting from hemorrhagic growth.

Development and Testing of a Machine Learning Model Using 18F-Fluorodeoxyglucose PET/CT-Derived Metabolic Parameters to Classify Human Papillomavirus Status in Oropharyngeal Squamous Carcinoma

  • Changsoo Woo;Kwan Hyeong Jo;Beomseok Sohn;Kisung Park;Hojin Cho;Won Jun Kang;Jinna Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.1
    • /
    • pp.51-61
    • /
    • 2023
  • Objective: To develop and test a machine learning model for classifying human papillomavirus (HPV) status of patients with oropharyngeal squamous cell carcinoma (OPSCC) using 18F-fluorodeoxyglucose (18F-FDG) PET-derived parameters in derived parameters and an appropriate combination of machine learning methods in patients with OPSCC. Materials and Methods: This retrospective study enrolled 126 patients (118 male; mean age, 60 years) with newly diagnosed, pathologically confirmed OPSCC, that underwent 18F-FDG PET-computed tomography (CT) between January 2012 and February 2020. Patients were randomly assigned to training and internal validation sets in a 7:3 ratio. An external test set of 19 patients (16 male; mean age, 65.3 years) was recruited sequentially from two other tertiary hospitals. Model 1 used only PET parameters, Model 2 used only clinical features, and Model 3 used both PET and clinical parameters. Multiple feature transforms, feature selection, oversampling, and training models are all investigated. The external test set was used to test the three models that performed best in the internal validation set. The values for area under the receiver operating characteristic curve (AUC) were compared between models. Results: In the external test set, ExtraTrees-based Model 3, which uses two PET-derived parameters and three clinical features, with a combination of MinMaxScaler, mutual information selection, and adaptive synthetic sampling approach, showed the best performance (AUC = 0.78; 95% confidence interval, 0.46-1). Model 3 outperformed Model 1 using PET parameters alone (AUC = 0.48, p = 0.047) and Model 2 using clinical parameters alone (AUC = 0.52, p = 0.142) in predicting HPV status. Conclusion: Using oversampling and mutual information selection, an ExtraTree-based HPV status classifier was developed by combining metabolic parameters derived from 18F-FDG PET/CT and clinical parameters in OPSCC, which exhibited higher performance than the models using either PET or clinical parameters alone.

Deep Learning-Based Assessment of Functional Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI

  • Hyo Jung Park;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Bumwoo Park;Yu Sub Sung;Seung Baek Hong;Hwaseong Ryu
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.720-731
    • /
    • 2022
  • Objective: We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity. Materials and Methods: The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset (110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, including liver volume normalized by body surface area (LVBSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR (aLSSR), LSSR × LVBSA, and aLSSR × LVBSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%. Results: In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The Bland-Altman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR × LVBSA showed the strongest correlation with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 0.895-0.959) to diagnose ICG-R15 ≥ 20%. Conclusion: Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing functional liver capacity using gadoxetic acid-enhanced HBP-MRI.

T2 Mapping with and without Fat-Suppression to Predict Treatment Response to Intravenous Glucocorticoid Therapy for Thyroid-Associated Ophthalmopathy

  • Linhan Zhai;Qiuxia Wang;Ping Liu;Ban Luo;Gang Yuan;Jing Zhang
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.664-673
    • /
    • 2022
  • Objective: To evaluate the performance of baseline clinical characteristics and pretherapeutic histogram parameters derived from T2 mapping of the extraocular muscles (EOMs) in the prediction of treatment response to intravenous glucocorticoid (IVGC) therapy for active and moderate-to-severe thyroid-associated ophthalmopathy (TAO) and to investigate the effect of fat-suppression (FS) in T2 mapping in this prediction. Materials and Methods: A total of 79 patients clinically diagnosed with active, moderate-to-severe TAO (47 female, 32 male; mean age ± standard deviation, 46.1 ± 10 years), including 43 patients with a total of 86 orbits in the responsive group and 36 patients with a total of 72 orbits in the unresponsive group, were enrolled. Baseline clinical characteristics and pretherapeutic histogram parameters derived from T2 mapping with FS (i.e., FS T2 mapping) or without FS (i.e., conventional T2 mapping) of EOMs were compared between the two groups. Independent predictors of treatment response to IVGC were identified using multivariable analysis. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performance of the prediction models. Differences between the models were examined using the DeLong test. Results: Compared to the unresponsive group, the responsive group had a shorter disease duration, lower kurtosis (FS-kurtosis), lower standard deviation, larger 75th, 90th, and 95th (FS-95th) T2 relaxation times in FS mapping and lower kurtosis in conventional T2 mapping. Multivariable analysis revealed that disease duration, FS-95th percentile, and FS-kurtosis were independent predictors of treatment response. The combined model, integrating all identified predictors, had an optimized area under the ROC curve of 0.797, 88.4% sensitivity, and 62.5% specificity, which were significantly superior to those of the imaging model (p = 0.013). Conclusion: An integrated combination of disease duration, FS-95th percentile, and FS-kurtosis was a potential predictor of treatment response to IVGC in patients with active and moderate-to-severe TAO. FS T2 mapping was superior to conventional T2 mapping in terms of prediction.

Comparison Between Contrast-Enhanced Computed Tomography and Contrast-Enhanced Magnetic Resonance Imaging With Magnetic Resonance Cholangiopancreatography for Resectability Assessment in Extrahepatic Cholangiocarcinoma

  • Jeongin Yoo;Jeong Min Lee;Hyo-Jin Kang;Jae Seok Bae;Sun Kyung Jeon;Jeong Hee Yoon
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.983-995
    • /
    • 2023
  • Objective: To compare the diagnostic performance and interobserver agreement between contrast-enhanced computed tomography (CECT) and contrast-enhanced magnetic resonance imaging (CE-MRI) with magnetic resonance cholangiopancreatography (MRCP) for evaluating the resectability in patients with extrahepatic cholangiocarcinoma (eCCA). Materials and Methods: This retrospective study included treatment-naïve patients with pathologically confirmed eCCA, who underwent both CECT and CE-MRI with MRCP using extracellular contrast media between January 2015 and December 2020. Among the 214 patients (146 males; mean age ± standard deviation, 68 ± 9 years) included, 121 (56.5%) had perihilar cholangiocarcinoma. R0 resection was achieved in 108 of the 153 (70.6%) patients who underwent curative-intent surgery. Four fellowship-trained radiologists independently reviewed the findings of both CECT and CE-MRI with MRCP to assess the local tumor extent and distant metastasis for determining resectability. The pooled area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of CECT and CE-MRI with MRCP were compared using clinical, surgical, and pathological findings as reference standards. The interobserver agreement of resectability was evaluated using Fleiss kappa (κ). Results: No significant differences were observed between CECT and CE-MRI with MRCP in the pooled AUC (0.753 vs. 0.767), sensitivity (84.7% [366/432] vs. 90.3% [390/432]), and specificity (52.6% [223/424] vs. 51.4% [218/424]) (P > 0.05 for all). The AUC for determining resectability was higher when CECT and CE-MRI with MRCP were reviewed together than when CECT was reviewed alone in patients with discrepancies between the imaging modalities or with indeterminate resectability (0.798 [0.754-0.841] vs. 0.753 [0.697-0.808], P = 0.014). The interobserver agreement for overall resectability was fair for both CECT (κ = 0.323) and CE-MRI with MRCP (κ = 0.320), without a significant difference (P = 0.884). Conclusion: CECT and CE-MRI with MRCP showed no significant differences in the diagnostic performance and interobserver agreement in determining the resectability in patients with eCCA.

Non-Contrast Cine Cardiac Magnetic Resonance Derived-Radiomics for the Prediction of Left Ventricular Adverse Remodeling in Patients With ST-Segment Elevation Myocardial Infarction

  • Xin A;Mingliang Liu;Tong Chen;Feng Chen;Geng Qian;Ying Zhang;Yundai Chen
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.827-837
    • /
    • 2023
  • Objective: To investigate the predictive value of radiomics features based on cardiac magnetic resonance (CMR) cine images for left ventricular adverse remodeling (LVAR) after acute ST-segment elevation myocardial infarction (STEMI). Materials and Methods: We conducted a retrospective, single-center, cohort study involving 244 patients (random-split into 170 and 74 for training and testing, respectively) having an acute STEMI (88.5% males, 57.0 ± 10.3 years of age) who underwent CMR examination at one week and six months after percutaneous coronary intervention. LVAR was defined as a 20% increase in left ventricular end-diastolic volume 6 months after acute STEMI. Radiomics features were extracted from the oneweek CMR cine images using the least absolute shrinkage and selection operator regression (LASSO) analysis. The predictive performance of the selected features was evaluated using receiver operating characteristic curve analysis and the area under the curve (AUC). Results: Nine radiomics features with non-zero coefficients were included in the LASSO regression of the radiomics score (RAD score). Infarct size (odds ratio [OR]: 1.04 (1.00-1.07); P = 0.031) and RAD score (OR: 3.43 (2.34-5.28); P < 0.001) were independent predictors of LVAR. The RAD score predicted LVAR, with an AUC (95% confidence interval [CI]) of 0.82 (0.75-0.89) in the training set and 0.75 (0.62-0.89) in the testing set. Combining the RAD score with infarct size yielded favorable performance in predicting LVAR, with an AUC of 0.84 (0.72-0.95). Moreover, the addition of the RAD score to the left ventricular ejection fraction (LVEF) significantly increased the AUC from 0.68 (0.52-0.84) to 0.82 (0.70-0.93) (P = 0.018), which was also comparable to the prediction provided by the combined microvascular obstruction, infarct size, and LVEF with an AUC of 0.79 (0.65-0.94) (P = 0.727). Conclusion: Radiomics analysis using non-contrast cine CMR can predict LVAR after STEMI independently and incrementally to LVEF and may provide an alternative to traditional CMR parameters.

Technical Feasibility of Quantitative Measurement of Various Degrees of Small Bowel Motility Using Cine Magnetic Resonance Imaging

  • Ji Young Choi;Jihye Yun;Subin Heo;Dong Wook Kim;Sang Hyun Choi;Jiyoung Yoon;Kyuwon Kim;Kee Wook Jung;Seung-Jae Myung
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1093-1101
    • /
    • 2023
  • Objective: Cine magnetic resonance imaging (MRI) has emerged as a noninvasive method to quantitatively assess bowel motility. However, its accuracy in measuring various degrees of small bowel motility has not been extensively evaluated. We aimed to draw a quantitative small bowel motility score from cine MRI and evaluate its performance in a population with varying degrees of small bowel motility. Materials and Methods: A total of 174 participants (28.5 ± 7.6 years; 135 males) underwent a 22-second-long cine MRI sequence (2-dimensional balanced turbo-field echo; 0.5 seconds per image) approximately 5 minutes after being intravenously administered 10 mg of scopolamine-N-butyl bromide to deliberately create diverse degrees of small bowel motility. In a manually segmented area of the small bowel, motility was automatically quantified using a nonrigid registration and calculated as a quantitative motility score. The mean value (MV) of motility grades visually assessed by two radiologists was used as a reference standard. The quantitative motility score's correlation (Spearman's ρ) with the reference standard and performance (area under the receiver operating characteristics curve [AUROC], sensitivity, and specificity) for diagnosing adynamic small bowel (MV of 1) were evaluated. Results: For the MV of the quantitative motility scores at grades 1, 1.5, 2, 2.5, and 3, the mean ± standard deviation values were 0.019 ± 0.003, 0.027 ± 0.010, 0.033 ± 0.008, 0.032 ± 0.009, and 0.043 ± 0.013, respectively. There was a significant positive correlation between the quantitative motility score and the MV (ρ = 0.531, P < 0.001). The AUROC value for diagnosing a MV of 1 (i.e., adynamic small bowel) was 0.953 (95% confidence interval, 0.923-0.984). Moreover, the optimal cutoff for the quantitative motility score was 0.024, with a sensitivity of 100% (15/15) and specificity of 89.9% (143/159). Conclusion: The quantitative motility score calculated from a cine MRI enables diagnosis of an adynamic small bowel, and potentially discerns various degrees of bowel motility.