• Title/Summary/Keyword: performance index

Search Result 4,629, Processing Time 0.03 seconds

ADPI Characteristics of Line Diffuser in a Room with Perimetric Heating Load (측벽 부하가 존재하는 공간에 설치된 라인 디퓨져의 ADPI 특성에 관한 연구)

  • Cho Young-Jin;Kang Seok-Youn;Moon Jong -Sun;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1204-1211
    • /
    • 2004
  • It is difficult to apply a conventional selection guide for diffusers when the diffuser is installed in a perimeter zone, because the air diffusion performance index (ADPI) vs. throw/length (T/L) ratio curve listed in conventional guide does not consider the perimetric heating load through the walls. The objective of this study is to evaluate the effect of the perimetric heating load on the ADPI and propose a selection guide for a proper line diffuser when perimetric heating load exists. The velocity and temperature distributions and the ADPI values are obtained numerically with various heat load ratios and air flow rates. The velocity and temperature distributions and the ADPI values are analyzed by CFD in case of various heat load ratios and air flow rates. Also, ADPI was calculated by those results. The ADPI values by numerical results are compared with an existing experimental data to verify the method for the evaluation of ADPI proposed in a present study. In case of a line diffuser installed at the high side wall, the ADPI decreases according to the increases of the flow rate on every heat load ratio of the present study except 0.75. The ADPI vs. T/L ratio curves have been proposed for the heat load ratios of 0.25, 0.5, 0.75 to guarantee the comport thermal environment when diffusers are installed in perimeter zone.

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Federated Learning Privacy Invasion Study in Batch Situation Using Gradient-Based Restoration Attack (그래디언트 기반 재복원공격을 활용한 배치상황에서의 연합학습 프라이버시 침해연구)

  • Jang, Jinhyeok;Ryu, Gwonsang;Choi, Daeseon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.987-999
    • /
    • 2021
  • Recently, Federated learning has become an issue due to privacy invasion caused by data. Federated learning is safe from privacy violations because it does not need to be collected into a server and does not require learning data. As a result, studies on application methods for utilizing distributed devices and data are underway. However, Federated learning is no longer safe as research on the reconstruction attack to restore learning data from gradients transmitted in the Federated learning process progresses. This paper is to verify numerically and visually how well data reconstruction attacks work in various data situations. Considering that the attacker does not know how the data is constructed, divide the data with the class from when only one data exists to when multiple data are distributed within the class, and use MNIST data as an evaluation index that is MSE, LOSS, PSNR, and SSIM. The fact is that the more classes and data, the higher MSE, LOSS, and PSNR and SSIM are, the lower the reconstruction performance, but sufficient privacy invasion is possible with several reconstructed images.

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Mathematical Analysis Power Spectrum of M-ary MSK and Detection with Optimum Maximum Likelihood

  • Niu, Zheng;Jiang, Yuzhong;Jia, Shuyang;Huang, Zhi;Zou, Wenliang;Liu, Gang;Li, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2900-2922
    • /
    • 2021
  • In this paper, the power spectral density(PSD) for Multilevel Minimum Shift Keyed signal with modulation index h = 1/2 (M-ary MSK) are derived using the mathematical method of the Markov Chain model. At first, according to an essential requirement of the phase continuity characteristics of MSK signals, a complete model of the whole process of signal generation is built. Then, the derivations for autocorrelation functions are carried out precisely. After that, we verified the correctness and accuracy of the theoretical derivation by comparing the derived results with numerical simulations using MATLAB. We also divided the spectrum into four components according to the derivation. By analyzing these figures in the graphic, each component determines the characteristics of the spectrum. It is vital for enhanced spectral characteristics. To more visually represent the energy concentration of the main flap and the roll-down speed of the side flap, the specific out-of-band power of M-ary MSK is given. OMLCD(Optimum Maximum Likelihood Coherent Detection) of M-ary MSK is adopted to compare the signal received with prepared in advance in a code element T to go for the best. And M-ary MSK BER(Bit Error Rate) is compared with the same ary PSK (Phase Shift Keying) with M=2,4,6,8. The results show the detection method could improve performance by increasing the length of L(memory inherent) in the phase continuity.

Performance of cement-stabilized sand subjected to freeze-thaw cycles

  • Jumassultan, Assel;Sagidullina, Nazerke;Kim, Jong;Ku, Taeseo;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In cold regions, the integrity of the infrastructures built on weak soils can be extensively damaged by weathering actions due to the cyclic freezing and thawing. This damage can be mitigated by exploiting soil stabilization techniques. Generally, ordinary Portland cement (OPC) is the most commonly used binding material for investigating the chemo-hydromechanical behavior. However, due to the environmental issue of OPC producing a significant amount of carbon dioxide emission, calcium sulfoaluminate (CSA) cement can be used as one of the eco-sustainable alternatives. Although recently several studies have examined the strength development of CSA treated sand, no research has been concerned about CSA cement-stabilized sand affected by cyclic freeze and thaw. This study aims to conduct a comprehensive laboratory work to assess the effect of the cyclic freeze-thaw action on strength and durability of CSA cement-treated sand. For this purpose, unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed on the stabilized soil specimens cured for 7 and 14 days which are subjected to 0, 1, 3, 5, and 7 freeze-thaw cycles. The test results show that the strength and durability index of the samples decrease with the increase of the freeze-thaw cycles. The loss of the strength and durability considerably decreases for all soil samples subjected to the freeze-thaw cycles. Overall, the use of CSA as a stabilizer for sandy soils would be an eco-friendly option to achieve sufficient strength and durability against the freeze-thaw action in cold regions.

Simple Kinematic Model Generation by Learning Control Inputs and Velocity Outputs of a Ship (선박의 제어 입력과 속도 출력 학습에 의한 단순 운동학 모델 생성)

  • Kim, Dong Jin;Yun, Kunhang
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.284-297
    • /
    • 2021
  • A simple kinematic model for the prediction of ship manoeuvres based on trial data is proposed in this study. The model consists of first order differential equations in surge, sway, and yaw directions which simulate the time series of each velocity component. Actually instead of sea trial data, dynamic model simulations are conducted with randomly varied control inputs such as propeller revolution rates and rudder angles. Based on learning of control inputs and velocity outputs of dynamic model simulations in sufficient time, kinematic model coefficients are optimized so that the kinematic model can be approximately reproduce the velocity outputs of dynamic model simulations with arbitrary control inputs. The resultant kinematic model is verified with new dynamic simulation sets.

Effects of the Educational Environment on Studio Apartment Prices : Focusing on Deposit and Monthly Rental Rates in Seoul (교육환경이 주거용 오피스텔의 가격에 미치는 영향 : 서울 전월세거래를 바탕으로)

  • Lee, Jae Won;Bae, Sang Young;Lee, Sang Youb
    • Korea Real Estate Review
    • /
    • v.28 no.3
    • /
    • pp.65-77
    • /
    • 2018
  • The purpose of this study is to analyze the effect of the educational environment on the prices of studio apartments, known as officetels, in Korea. Since the revision of relevant laws in 2010, they have served as substitutes for residential purposes in areas suffering from housing shortage, especially where the educational environment is a significant factor. To assess the relation between the educational environment and rental rates, the hedonic price model and artificial neural networks were implemented. The national assessment of the academic performance of middle and high schools that were closest to each officetel, and the ratio of students going to special-purpose schools and private high schools were considered as independent variables. Research findings indicated that the positive effect of the dependent variable increased as the value of educational environment-related variables increased. This result could be utilized as a functional index for housing providers after considering educational environments.

The Test-Retest Reliability and Criterion-Related Validity of a Trunk Stability Robot When Measuring Static Sitting and Standing Symmetry in Stroke Patients (뇌졸중 환자들을 위한 체간 안정화 로봇의 정적인 앉기와 서기 대칭성 평가의 검사-재검사간 신뢰도와 기준 관련 타당도)

  • An, Seung-Heon;Kim, Dong-Hoon;Jang, Young-Min
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.405-414
    • /
    • 2018
  • Purpose: The purpose of this study was to examine test-retest reliability and criterion-related validity of a trunk stability robot when measuring the weight-bearing symmetry static sitting and standing in stroke patients. Methods: For 27 stroke patients, weight-bearing symmetry was assessed twice, 7 days apart. The intraclass correlation coefficient (ICC2,1) and minimal detectable change (MDC) were used to examine the level of agreement between test and retest. The criterion-related validity of weight -bearing symmetry was demonstrated by Spearman correlation of modified Barthel index (MBI), the sit to stand test (STS), the timed up & go Test (TUG), and the function in sitting test (FIST). Results: the test-retest agreements were excellent for the weight-bearing symmetry of static sitting (ICC2,1: 0.90) and standing (ICC2,1: 0.89). It all showed that the acceptable MDC for the weight-bearing symmetry of static sitting and standing was 0.11 and 0.16, respectively (highest possible score<20 %), indicating that the measures had a small and acceptable degree of measurement error. The weight-bearing symmetry of static sitting was significantly correlated with the TUG(r=-0.45) and FIST(r=0.46)(p<0.05); the weight-bearing symmetry of static standing was also significantly correlated with MBI (r=0.65), TUG (r=-0.67), FIST (r=0.61)(p<0.01), and STS (r=-0.47)(p<0.05). Conclusion: The weight-bearing symmetry of static sitting and standing assessed by the trunk stability robot showed highly sufficient test-retest agreement and mild-to-moderate validity. It could also be useful for clinicians and researchers to evaluate balance performance and monitor functional change in stroke patients.

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.