한국해양과학기술원에서 생산하여 공개하고 있는 다종 위성 기반의 해수면온도(Sea surface temperature) 자료를 이용하여 동해안 냉수대(Cold water mass) 해역을 탐지하는 알고리즘을 개발하였다. 본 연구에서는 냉수대의 분포를 고려하여 동해안을 3개 해역("고성-울진", "삼척-구룡포", "포항-기장")으로 구분하였다. 각 해역에 K-means clustering 기법을 적용하여 3개 그룹으로 나누고 3개의 그룹은 평균 수온이 높은 순서대로 Group 1, Group 2, Group 3로 칭한다. 수온이 가장 낮은 집합인 Group 3는 냉수대 특성을 나타내는 2가지(각 해역 표준 편차와 Group 1과 Group 3의 평균 수온 차이)의 임계치가 적용되고 탐지 해역내 표준편차가 0.6℃ 이상이고 그룹별 평균 수온 차이가 2℃ 이상일 경우 Group 3을 냉수대로 판단한다. 2022년도 탐지 결과, "포항-기장"은 77일로 가장 많이 탐지되었으며 정량적인 평가를 위해 혼동행렬 성능지표를 계산하였다. 동해안 3곳 해역의 평균 정확도(Accuracy)는 0.83 이상으로 나타났고 F1 score는 "포항-기장"에서 최대 0.95이었다. 본 연구에서 제안한 탐지 알고리즘을 적용하여 보다 구체적인 냉수대 해역의 공간 분포를 매일 이메일 서비스로 제공하고 있다.
최근 등장하는 랜섬웨어들은 다양한 공격 기법과 다양한 경로를 통해 공격을 수행하고 있어 조기 탐지와 방어에 많은 어려움을 겪고 있으며, 그 피해 규모도 날로 증가하고 있다. 따라서 본 논문에서는 효과적인 랜섬웨어 탐지를 위하여 파일 암호화와 암호화 패턴을 머신러닝 기반으로 하는 감지 기법을 제안한다. 파일 암호화는 랜섬웨어가 공격하는데 필수적으로 사용하는 기능으로 암호 행위와 암호화 패턴을 분석함으로써 랜섬웨어를 탐지하고 랜섬웨어의 특정 변종이나 새로운 유형의 랜섬웨어를 탐지할 수 있기 때문에 랜섬웨어 공격을 식별하고 차단하는 데 매우 효과적이다. 제안한 머신러닝 기반의 암호화 행위 감지 기법은 암호화 특성과 암호화 패턴 특성을 추출하여 머신러닝 기반의 분류기를 통해 각각 학습을 시켜 해당 행위에 대한 탐지를 진행하고 최종 결과는 두 분류기의 평가 결과를 기반으로 앙상블 분류기에서 랜섬웨어 유무를 판별하여 좀 더 정확도를 높였다. 또한, 제안한 기법을 numpy와 pandas, 파이썬의 사이킷런 라이브러리를 사용하여 구현하여 평가지표를 사용한 성능를 평가한 결과 평균적으로 94%,의 정확도와 95%의 정밀도, 93%의 재현률과 95%의 F1 스코어가 산출되었다. 성능 평가 결과를 보면 암호화 행위 감지를 통해 랜섬웨어 탐지가 가능하다는 것을 확인할 수 있었고 랜섬웨어의 사전 탐지를 위해 제안한 기법의 성능을 높이기 위한 연구도 계속해서 진행되어야 한다.
ICT 인프라의 이상탐지를 통한 유지보수와 장애 예방이 중요해지고 있다. 장애 예방을 위해서 이상탐지에 대한 관심이 높아지고 있으며, 지금까지의 다양한 이상탐지 기법 중 최근 연구들에서는 딥러닝을 활용하고 있으며 오토인코더를 활용한 모델을 제안하고 있다. 이는 오토인코더가 다차원 다변량에 대해서도 효과적으로 처리가 가능하다는 것이다. 한편 학습 시에는 많은 컴퓨터 자원이 소모되지만 추론과정에서는 연산을 빠르게 수행할 수 있어 실시간 스트리밍 서비스가 가능하다. 본 연구에서는 기존 연구들과 달리 오토인코더에 2가지 요소를 가미하여 이상탐지의 성능을 높이고자 하였다. 먼저 다차원 데이터가 가지고 있는 속성별 특징을 최대한 부각하여 활용하기 위해 멀티모달 개념을 적용한 멀티모달 오토인코더를 적용하였다. CPU, Memory, network 등 서로 연관이 있는 지표들을 묶어 5개의 모달로 구성하여 학습 성능을 높이고자 하였다. 또한, 시계열 데이터의 특징을 데이터의 차원을 늘리지 않고 효과적으로 학습하기 위하여 조건부 오토인코더(conditional autoencoder) 구조를 활용하는 조건부 멀티모달 오토인코더(Conditional Multimodal Autoencoder, CMAE)를 제안하였다. 제안한 CAME 모델은 비교 실험을 통해 검증했으며, 기존 연구들에서 많이 활용된 오토인코더와 비교하여 AUC, Accuracy, Precision, Recall, F1-score의 성능 평가를 진행한 결과 유니모달 오토인코더(UAE)와 멀티모달 오토인코더(Multimodal Autoencoder, MAE)의 성능을 상회하는 결과를 얻어 이상탐지에 있어 효과적이라는 것을 확인하였다.
최근 인간과 상호작용할 수 있는 '소셜로봇'을 활용하여 복잡하고 다양한 사회문제를 해소하고 개인의 삶의 질을 제고하려는 시도가 주목받고 있다. 과거 로봇은 인간을 대신해서 산업 현장에 투입되고 노동력을 제공해주는 존재로 인식되었다. 그러나 오늘날의 로봇은 각종 산업분야를 관통하는 핵심 키워드인 'Smart'의 등장을 기점으로 인간과 함께 공존하며 사회적 교감이 가능한 '소셜로봇(Social Robot)'으로 그 개념이 확장되고 있다. 구체적으로 고객을 응대하는 서비스 로봇, 에듀테인먼트(Edutainment) 성격의 로봇, 그리고 인간과의 교감, 상호작용에 주목한 감성로봇 등이 출시되고 있다. 그러나 4차 산업혁명을 계기로 ICT 서비스 환경이 급격한 발전을 이룬 현재까지 소셜로봇의 대중화는 체감되지 않고 있다. 소셜로봇의 핵심 기능이 사용자와의 사회적 교감임을 고려하면, 소셜로봇의 대중화를 촉진하기 위해서는 기기에 적용되는 기술 이외의 요소들도 중요하게 고려할 필요가 있다. 본 연구는 로봇의 디자인 요소가 소셜로봇에 대한 소비자들의 구매를 이끌어내는데 중요하게 작용할 것으로 판단한다. 로봇의 외형이 유발하는 감성은 사용자의 인지, 추론, 평가와 기대를 형성하는 과정에서 중요한 영향을 미치며 나아가 로봇에 대한 태도와 호감 그리고 성능 추론 등에도 영향을 줄 수 있다. 그러나 소셜로봇에 대한 기존 연구들은 로봇의 개발방법론을 제안하거나, 소셜로봇이 사용자에게 제공하는 효과를 단편적으로 검증하는 수준에 머무르고 있다. 따라서 본 연구는 소셜로봇의 외형으로부터 사용자가 느끼는 감성이 소셜로봇에 대한 사용자의 태도에 미치는 영향을 검증해보고자 한다. 이때 서로 다른 출처의 이종 데이터 간 결합을 통하여 소셜로봇 디자인평가 모형을 구성한다. 구체적으로 소셜로봇의 외형에 대하여 사전에 구축된 ABOT Database로부터 다수의 소셜로봇에 대한 세 가지 정량적 지표 데이터를 확보하였다. 소셜로봇의 디자인 감성은 (1) 기존의 디자인평가 문헌과 (2) 소셜로봇 제품 후기와 블로그 등의 온라인 구전, (3) 소셜로봇 디자인에 대한 정성적인 인터뷰를 통해 도출하였다. 이후 사용자 설문을 통하여 각각의 소셜로봇에 대해 사용자가 느끼는 감성과 태도에 대한 평가를 수집하였다. 세부적인 감성 평가항목 23개에 대하여, 차원 축소 방법론을 통해 6개의 감성 차원을 도출하였다. 이어서 도출된 감성 차원들이 사용자의 소셜로봇에 대한 태도에 미치는 영향을 검증하기 위해 회귀분석을 수행하여 감성과 태도 간의 관계를 파악해 보았다. 마지막으로 정량적으로 수집된 소셜로봇의 외형에 대한 지표가 감성과 태도 간의 관계에 영향을 줄 수 있음을 검증하기 위해 조절회귀분석을 수행하였다. 기술적인ABOT Database 속성 지표들과 감성 차원들 간의 순수조절효과를 확인하고, 도출된 조절효과에 대한 시각화를 수행하여 외형, 감성, 그리고 태도 간의 관계를 다각적인 관점에서 해석하였다. 본 연구는 이종간 데이터를 연결하여 소셜로봇의 기술적 속성과 소비자 감성, 태도까지 변수 간 관계를 총체적으로 실증 분석했다는 점에서 이론적 공헌을 가지며, 소셜로봇 디자인 개발 전략에 대한 의사결정을 지원하기 위한 기준으로 소비자 감성의 활용 가능성을 제안하였다는 실무적 의의를 가진다.
대학 교육에 있어서 전공과목의 선택은 학생들의 진로에 중요한 역할을 한다. 하지만, 산업의 변화에 발맞춰 대학 교육도 학과별 전공과목의 분야가 다양해지고 그 수가 많아지고 있다. 이에 학생들은 본인의 진로에 맞게 수업을 선택하여 수강하는 것에 어려움을 겪고 있다. 본 연구는 대학 전공과목 추천 모델을 제시함으로써 개인 맞춤형 교육을 실현하고 학생들의 교육만족도를 제고하고자 한다. 모델 연구에는 대학교 학부생들의 2015년~2017년 수강 이력 데이터를 활용하였으며, 메타데이터로는 학생과 수업의 전공 명을 사용했다. 수강 이력 데이터는 컨텐츠 소비 여부만을 나타낸 암시적 피드백 데이터로, 수업에 대한 선호도를 반영한 것이 아니다. 따라서 학생과 수업의 특성을 나타내는 임베딩 벡터를 도출했을 시, 표현력이 낮다. 본 연구는 이러한 문제점에 착안하여, 네트워크 분석을 통해 학생, 수업의 벡터를 생성하고 이를 모델의 입력 값으로 활용하는 Net-NeuMF 모델을 제시한다. 모델은 암시적 피드백을 가진 데이터를 이용한 대표적인 모델인 원핫 벡터를 이용하는 NeuMF의 구조를 기반으로 하였다. 모델의 입력 벡터는 네트워크 분석을 통해 학생과 수업의 특성을 나타낼 수 있도록 생성하였다. 학생을 표현하는 벡터를 생성하기 위해, 각 학생을 노드로 설정하고 엣지는 두 학생이 같은 수업을 수강한 경우 가중치를 가지고 연결되도록 설계했다. 마찬가지로 수업을 표현하는 벡터를 생성하기 위해 각 수업을 노드로 설정하고 엣지는 공통으로 수강한 학생이 있는 경우 연결시켰다. 이에 각 노드의 특성을 수치화 하는 표현 학습방법론인 Node2Vec을 이용하였다. 모델의 평가를 위해 추천 시스템에서 주로 활용하는 지표 4가지를 사용하였고, 임베딩 차원이 모델에 미치는 영향을 분석하기 위해 3가지 다른 차원에 대한 실험을 진행하였다. 그 결과 기존 NeuMF 구조에서 원-핫 벡터를 이용하였을 때보다 차원과 관계없이 평가지표에서 좋은 성능을 보였다. 이에 본 연구는 학생(사용자)와 수업(아이템)의 네트워크를 이용해 기존 원-핫 임베딩 보다 표현력을 높였다는 점, 모델을 구성하는 각 구조의 특성에 맞도록 임베딩 벡터를 활용하였다는 점, 그리고 기존의 방법론에 비해 다양한 종류의 평가지표에서 좋은 성능을 보였다는 점을 기여점으로 가지고 있다.
본 연구는 장기미집행 도시공원의 대응수단으로 진행된 민간공원 특례사업 중 첫 시행 및 완료된 의정부 직동근린공원을 대상으로 이용객의 공원이용현황과 중요도 및 만족도 분석을 통해 인식을 비교하고자 수행하였다. 특례사업 추진계획에 따른 대상지 아파트 거주민과 비거주민을 그룹으로 분류하였으며, 공원이용현황과 IPA 분석을 위해 중요도 및 만족도 설문을 수행하였다. 먼저 민간공원 특례사업 추진 시 발생하고 있는 입지적 특성 측면에서 현황분석을 통해 확인한 결과, 연구대상지는 산지형 대상지들과 달리 평지형에 가까운 입지 형태를 보여 이용객들의 경관성에 대한 만족도가 높은 것으로 나타났다. 둘째, 특례사업지 내 아파트 거주민들은 접근성이 용이하여 이용도가 비거주민에 비해 상대적으로 높은 것으로 나타났다. 셋째, IPA 분석 및 전략수립을 통해 항목별 인식차이를 확인하였다. 거주민은 I사분면에 시설 및 서비스에서 화장실 설치가 우선순위로 나타났으며, 비거주민은 주차시설과 휴식시설이 화장실 설치보다 우선순위가 높은 것으로 확인되었다. II사분면에서는 전반적으로 거주민과 유사하게 나타났으나 공원까지의 거리는 만족도의 수준이 낮아 III사분면에 위치하였다. 본 연구에서 거주민과 비거주민 간의 인식차이는 추후 공원을 관리하는데 있어 접근적, 시설적 문제점들을 야기할 수 있으므로 조성 후에 거주민들의 인식차이를 고려한 관리전략을 수립을 통해 개선할 수 있는 방안모색이 필요할 것으로 사료된다. 또한, 본 연구결과를 통해 공원조성 목적과 공원의 유형선정, 유형별 계획 및 관리지표의 선정이 특례사업의 추진에 있어 공원조성 계획 시 중요할 것으로 판단되었다.
벤처캐피탈은 유망한 기술력과 우수인력을 갖춘 창업 초기 단계부터 성장단계의 유망 중소벤처기업에 필요한 자본을 투자하고 경영 및 기술 등을 지원하여 성장 이후 다양한 수단을 통해 투자금을 회수하여 이익을 실현하는 벤처생태계의 핵심주체로서의 역할을 하고 있다. 벤처캐피탈의 업무는 다양한 출자자(LP)를 모집하여 벤처투자조합(펀드)을 결성을 통해 성장성이 있는 중소벤처기업에 투자하고 기업이 성장함에 따라 투자금을 회수하여 출자자들에게 배분과 재투자를 하는 것이다. 벤처투자에 있어 가장 중요한 역할을 담당하고 있는 벤처캐피탈리스트의 주요 업무는 유망기업발굴, 기업분석 및 평가, 투자심사, 사후관리, 투자회수 등이며 특히 임원급 이상의 경우 펀드레이징(펀드결성)이 중요한 업무이다. 벤처캐피탈의 성공지표는 펀드결성과 투자수익률에 있으며 벤처캐피탈리스트는 투자와 회수 및 펀드결성등의 업무성과로 연봉, 성과급, 승진 등 보상이 이루어지고 있다. 최근 급격히 성장하는 벤처투자시장에 비해 투자인력은 부족하며 이에 투자성과 제고를 위해 인력양성과 장기근속을 위한 인프라와 시스템을 갖추기 위해 벤처캐피탈은 많은 노력을 하고 있으나 다른 산업에 비해 벤처캐피탈 산업의 연구 자체가 부족할 뿐만 아니라 주로 계량적인 관점에서 연구가 이루어졌다. 이에 본 연구는 벤처캐피탈의 투자 경험, 권한위임, 직무적합성, 동료 관계 등이 펀드결성과 투자수익률에 미치는 영향력을 연구하고 실증적인 분석하였으며, 투자 경험이 많을수록, 권한위임이 클수록, 직무적합성이 높을수록 동료 관계가 좋을수록 투자성과에 정(+)의 영향을 미쳤다. 이러한 실증연구 결과는 향후 벤처캐피탈은 직무적합성이 높고 투자 경험이 많은 벤처캐피탈리스트가 장기근속을 할 수 있도록 직무환경 조성과 인력운영 전략이 필요하다는 시사점을 제시하였다.
본 연구에서는 우리나라 초·중·고등학생들이 과학의 정의적 영역에서 성취가 낮은 원인을 분석하고자 하였다. 이를 위하여 초등학교 4학년부터 고등학교 1학년까지 학년별 3~4명, 총 27명의 학생을 대상으로 학년별로 면담을 하였고, 초등학교 교사 3명, 중학교 교사 3명, 고등학교 교사 3명, 총 9명의 교사를 대상으로 학교급별로 면담을 하였다. 면담에서는 과학긍정경험 지표의 5가지 하위 영역인 '과학학습정서', '과학관련 자아개념', '과학학습동기', '과학관련 진로포부', '과학관련 태도'로 나눠 관련된 질문을 하였다. 면담 내용을 녹음하고 전사하여 범주화하였다. 과학 정의적 성취가 낮은 원인을 살펴 본 결과, 학생들은 실험·실습이 제대로 이루어지지 못할 때, 과학이론과 용어가 어려워서, 탐구 결과에 대한 기록 부담 등으로 부정적인 정서를 경험하는 것으로 나타났다. 그리고 학생들은 과학 성적이 좋지 않아서, 과학 용어가 어려워서, 학습량이 많아서 등의 이유로 과학관련 자아개념이 부정적으로 변한다고 응답하였다. 또 과학학습 동기가 낮아지는 원인으로 과학 수업 내용과 일상생활이나 자신과의 관련성에 대한 인식 부족, 과학 수업내용의 어려움, 좋지 않은 과학 성적, 자신의 흥미나 진로와의 관련성 부족 등으로 나타났고, 과학 관련 진로포부가 낮아지는 주요한 원인으로 자신의 진로가 과학과 관계없는 분야이기 때문에, 과학 성적이 좋지 않아서 등으로 나타났다. 과학 수업이 어려워지거나 과학 수업에 대한 부정적인 느낌으로 인해 과학관련 태도가 부정적으로 변화하였고, 고등학생들은 과학이 사회에 끼치는 양면성을 인식하였다. 면담 결과에 근거하여 과학 수업개선을 위해 실험 및 실습을 위한 지원, 과학 기초학력 지원, 초등학교 '실험관찰'의 개선, 교수학습 자료의 개발, 과학 관련 진로 관련 정보의 제공 방안 등을 제안하였다.
본 연구의 목적은 미래 기후변화에 따른 담수호의 종합적 수자원 관리를 위하여, 이수-치수-수질을 모두 고려한 평가지표를 설정하고, 로버스트 의사결정 기법을 활용하여 담수호 관리수위 별 변화를 분석하고 평가하는데 있다. 기후변화에 따른 유입량 변화와 이에 따른 호소 수문, 수질 변화를 모의하기 위해 유역-호소 연계모델을 활용하였다. 관리수위는 -1.7 El.m부터 0.3 El.m 까지 5개의 대안을 설정하고 ACCESS-CM2 a Global Climate Model의 SSP1, 2, 3, 5 시나리오에 따른 변화를 평가하였다. 로버스트 의사결정을 위해 기간신뢰도 기반 이수-치수-수질 지표를 성과지표로 산정하고, 후회도를 결정지표로 최소의 최대후회도를 가지는 대안을 산정하고자 하였다. 대안 별 평가 결과 -1.2 El. m가 최적 관리수위로 산정되었다. 관리수위를 높게 설정할수록 치수적 실패에 낮게 설정할수록 이수적 실패에 가까워지는 것으로 나타났으며, SSP5 시나리오에서 가장 많은 실패가 발생하였다. 수질 부문에서는 관리수위를 상승시킬수록 저수지 체적 증가로 수질 변화가 적게 나타났으며, 낮출수록 수질 변화가 크게 나타났다. 하지만 현재 담수호의 수질 상태가 좋지 않아 관리수위를 상승시켜 수질 변화가 적었을 때 실패가 더 자주 발생하였다.
전 세계적으로 녹조 대발생은 빈번하게 보고되고 있으며, 국내에서도 매년 녹조로 인한 심각한 수질 오염 문제가 발생하고 있다. 지속적인 관리와 신속한 대응을 통한 수생태계 보호가 필요하다. 녹조 발생의 지표인 chlorophyll-a (Chl-a) 농도를 예측하기 위해 위성 영상을 이용한 연구가 많이 이루어지고 있다. 하지만 수계에 따라 변하는 분광특성과 대기 보정 오류로 인해 정확한 Chl-a 산출에 어려움이 있어 최근 머신러닝 모델을 활용하고 있다. 위성 분광지수 뿐만 아니라 녹조에 영향을 미치는 인자들에 대한 복합적인 고려가 필요하다. 따라서, 본 연구는 수질, 수문 및 기상 인자와 Sentinel-2 영상을 복합적으로 고려하여 데이터셋을 구축하였다. 최근 5년간 낙동강에 위치한 8개 보 구간의 Chl-a 농도 예측에 대표적인 앙상블 모델 random forest (RF)와 extreme gradient boosting (XGBoost)을 활용하였다. 모델 평가 지표로 r-squared score (R2), root mean square errors(RMSE), mean absolute errors (MAE)를 사용하였으며, XGBoost의 R2가 0.810, RMSE가 6.612, MAE가 4.457로 유의미한 결과를 얻은 것을 확인하였다. Shapley additive explanations (SHAP) 분석을 통해 두 모델 모두 수질 인자 suspended solids (SS), biochemical oxygen demand (BOD), dissolved oxygen (DO)과 red edge 밴드를 활용한 밴드비가 높은 중요도를 보인 것을 알 수 있었다. 다양한 입력 데이터는 모델 성능 향상에 도움을 주는 것을 확인할 수 있었으며, 국내외 녹조 탐지에 적용될 수 있을 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.