• 제목/요약/키워드: performance distribution

검색결과 7,572건 처리시간 0.033초

부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법 (Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model)

  • 조수현;신경식
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.307-332
    • /
    • 2022
  • 부도예측모형은 여러 금융기관의 신용평가모형의 지식기반(knowledge base)로 이용되고 있으며 최근 머신러닝 기법의 발전으로 이를 도입하여 고도화하려는 다양한 시도가 진행 중이다. 그러나 실제 이러한 모형이 도입되기 위해서는 모형을 이용하는 사용자와 설명제공 대상인 고객의 이해와 수용이 전제되어야 한다. 그러나 사용자에게 제공되는 설명이 현실적 타당성(feasibility)이 결여되어 있다면 모형의 신뢰성과 수용도에 부정적인 영향을 미친다. 이에 따라 본 연구는 도메인 지식을 설명 생성 알고리즘에 통합하여 현실적으로 타당한 설명을 사용자에게 제공하고자 한다. 본 연구에서는 머신러닝 기반의 부도예측 모형에 설명력을 더하는 방법으로 반사실적 예시(counterfactual example) 기반의 로컬영역에서의 설명을 제공하는 모델을 제안한다. 제안 모델은 모형에 이용된 재무변수의 특성을 설명력 생성 알고리즘에 통합하여 설명의 현실적 가능성을 확보하고 이를 통해 사용자의 이해와 수용을 도모하고자 한다. 또한 본 연구에서는 반사실적 예시기반 설명을 위해 유전알고리즘(GA)를 이용하며 다목적함수를 목적함수로 설정하여 반사실적 예시의 주요 기준이 되는 항목을 반영하고 있다. 본 연구는 대표적인 머신러닝 기법인 인공신경망을 이용해 부도예측모형을 학습시킨 뒤, 사후적 방법(post-hoc)으로 설명을 위한 알고리즘을 도입하여 기존의 모형 설명 알고리즘인 LIME과 현실적 가능성이 결여된 반사실적 예시 기반 알고리즘과 비교하였다. 더 나아가 제안방법의 금융/회계 분야의 종사자를 대상으로 서베이를 진행하여 제안 방법의 설명의 질을 정성적으로 평가하였다.

데이터 증강 기반 회귀분석을 이용한 N치 예측 (A Prediction of N-value Using Regression Analysis Based on Data Augmentation)

  • 김광명;박형준;이재범;박찬진
    • 지질공학
    • /
    • 제32권2호
    • /
    • pp.221-239
    • /
    • 2022
  • 플랜트, 토목 및 건축 사업에서 말뚝 설계 시 어려움을 겪는 주된 요인은 지반 특성의 불확실성이다. 특히 표준관입시험을 통해 구한 N치가 설계 시 주요 입력값이나 짧은 입찰기간과 광범위한 구역에서 다수의 현장시험을 실시하는 것은 실제적으로 어려운 상황이다. 본 연구에서는 인공지능(AI)을 가지고 회귀분석을 적용하여 N치를 예측하는 연구를 수행하였으며, 최소한의 시추자료를 학습시킨 후 표준관입시험을 실시하지 못한 곳에서 N치를 예측하는데 그 목적이 있다. AI의 학습 성능을 높이기 위해서는 빅 데이터가 중요하며, 금회 연구 시 부족한 시추자료를 빅 데이터화 하는데 '원형증강법'을 적용하여 시추반경 2 m까지 가상 N치를 생성시키는 작업을 선행하였다. AI 모델 중 인공신경망, 의사결정 나무, 오토 머신러닝을 각각 적용하였으며 이 중 최적의 모델을 선택하였다. 최적의 모델을 선택하는 방법은 세 가지의 예측된 AI 모델 중 최소 오차값을 가지는 것이다. 이를 위해 폴란드, 인도네시아, 말레이시아에서 수행한 6개 프로젝트를 대상으로 표준관입시험의 실측N치와 AI의 예측N치를 비교하여 타당성 여부를 연구하였고, 연구 결과 AI 예측값에 대한 신뢰도가 높은 것으로 분석되었다. AI 예측값을 가지고 미시추 구간에서 지반특성을 파악 할 수 있었으며 3차원 N치 분포도를 사용하면 최적의 구조물 배치가 가능함을 확인하였다.

은닉 마르코프 모델을 이용하여 계절의 변동을 동반한 인공 바람자료 생성 및 검증 (Generation and Verification of Synthetic Wind Data With Seasonal Fluctuation Using Hidden Markov Model)

  • 박석영;유기완
    • 한국항공우주학회지
    • /
    • 제49권12호
    • /
    • pp.963-969
    • /
    • 2021
  • 풍력발전단지 위치 선정에 있어 풍속 분포 및 발전량을 평가하기 위해 해당 지역의 기상 타워에서 계측된 바람 자료를 이용한다. 그러나 기상 타워에서 계측된 바람 자료는 종종 정보가 누락되거나 원하는 높이에 맞지 않거나, 혹은 데이터 길이가 충분하지 않아 풍력터빈 제어 및 성능 시뮬레이션 수행에 어려움을 겪게 된다. 따라서 풍력터빈 혹은 발전단지에 대한 연간 발전량 및 이용률을 평가하는데 원하는 높이에서 장기간의 연속적인 바람 자료는 매우 중요하다. 또한, 한반도와 같이 계절에 따른 풍향과 풍속 변동이 뚜렷한 경우에는 계절별 특징이 고려된 풍속과 풍향을 동반한 바람 자료를 고려해야 한다. 본 연구에서는 통계적 방법인 은닉 마르코프 모델을 이용하여 풍속과 풍향의 변동을 고려한 인공 바람을 생성하기 위한 방법을 제시한다. 통계처리를 위한 바람 자료는 전라북도 고군산군도에 있는 말도의 기상청 방재기상관측(AWS) 장비에서 계측된 자료를 사용한다. 은닉 마르코프 모델에 의해 생성된 인공 바람은 통계 변수, 풍력에너지밀도, 계절별 평균 풍속, 주 풍향 등을 계측 자료와 비교를 통해 검증하기로 한다.

면외방향 어긋난 보를 갖는 철골모멘트골조의 접합부 성능 (Connection Performance of Steel Moment Frame with Out-of-Plane Beam Skew)

  • 홍종국
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권2호
    • /
    • pp.84-91
    • /
    • 2022
  • 본 연구에서는 국내 내진설계기준에 의해 중간모멘트골조로 설계된 철골 모멘트접합부에서 면외방향 어긋남을 갖는 보가 접합부의 거동에 미치는 영향을 평가하였다. 기둥을 중심으로 보가 접합되는 형식에 따라 2가지 경우(단면접합 및 양면접합)와 각각의 경우에 대하여 4개 수준의 어긋남 각도(0°, 10°, 20°, 30°)를 조합하여 총 14개의 유한요소해석 모델을 구성하였다. 해석결과, 면외 어긋남을 갖는 대상 모멘트접합부는 국내 구조기준에 따른 중간모멘트골조의 성능수준을 만족하는 것으로 나타났다. 그러나, 면외 어긋남 각도가 커질수록 접합부 시스템의 하중저항능력이 감소하였다. 면외 어긋남 각도가 30°인 접합부에서 보-기둥이 직교된 접합부에 비하여 최대 하중은 약 13% 감소하였고, 층간 변위각 0.02 rad까지의 에너지 소산능력은 최대 26% 감소하였다. 또한, 어긋남 형상에 기인하여 접합부와 인접한 보 플랜지에서 응력이 비대칭으로 분포되며, 보 플랜지와 기둥 플랜지가 예각을 이루는 내측 플랜지(Inner Flange)에 응력이 집중되었다. 본 연구에서 고려한 보-기둥 접합에서는 어긋난 보에 의해 기둥의 축방향 회전에 미치는 영향은 미미하여 무시할 만 하였다.

통계적 3차 모멘트 기반의 목적함수를 이용한 NSRP 모형의 극치강우 재현능력 평가 (Evaluation of extreme rainfall estimation obtained from NSRP model based on the objective function with statistical third moment)

  • 조혜미;김용탁;유재웅;권현한
    • 한국수자원학회논문집
    • /
    • 제55권7호
    • /
    • pp.545-556
    • /
    • 2022
  • 수공구조물 설계 및 수자원 계획에서는 목표연도 이상의 수문기상자료를 활용하는 것이 추천된다. 강우 자료의 확장을 위해 추계학적 강수 모의 모형을 활용하는데, Bartlett-Lewis Rectangular Pulse Modified Model (BLRPM)과 Neyman-Scott Rectangular Pulse Model(NSRPM)이 대표적이다. 이 모형들은 확률분포의 매개변수 조합을 통해 추정되는 통계적 모멘트와 관측값의 통계적 모멘트를 반복 비교하여 최적 매개변수를 추정한다. 그러나 상대적으로 적은 관측값을 이용하여 매개변수를 추정하는 것은 부적절하게 정의된 문제(ill-posed problem)에 해당하며, 최적화 과정에서 매개변수 추정이 어려울 뿐만 아니라, 매개변수의 변동성도 매우 크다. 또한, 일부 연구에서 드러나듯이, 모형 매개변수 추정과정에서 다양한 목적함수를 활용해도 2차 모멘트에 국한되어 있어, 극치 강수량 재현에는 한계가 있다. 따라서 본 연구는 3차 모멘트를 포함한 목적함수를 활용하여 NSRPM 매개변수를 추정하고, 기존 2차 모멘트를 이용한 매개변수 접근방법과 극치강수량 재현 측면에서 비교를 수행하였다. 그 결과, 목적함수의 왜곡도 포함 여부에 따라 1, 2차 모멘트는 큰 차이를 나타내지 않았지만, 극치강우 재현 측면에서는 왜곡도를 포함한 경우가 포함하지 않은 경우보다 개선된 결과를 나타냈다.

불검출 자료를 포함한 작업환경측정 자료의 분석 방법 비교 (A Comparison of Analysis Methods for Work Environment Measurement Databases Including Left-censored Data)

  • 박주현;최상준;고동희;박동욱;성예지
    • 한국산업보건학회지
    • /
    • 제32권1호
    • /
    • pp.21-30
    • /
    • 2022
  • Objectives: The purpose of this study is to suggest an optimal method by comparing the analysis methods of work environment measurement datasets including left-censored data where one or more measurements are below the limit of detection (LOD). Methods: A computer program was used to generate left-censored datasets for various combinations of censoring rate (1% to 90%) and sample size (30 to 300). For the analysis of the censored data, the simple substitution method (LOD/2), β-substitution method, maximum likelihood estimation (MLE) method, Bayesian method, and regression on order statistics (ROS)were all compared. Each method was used to estimate four parameters of the log-normal distribution: (1) geometric mean (GM), (2) geometric standard deviation (GSD), (3) 95th percentile (X95), and (4) arithmetic mean (AM) for the censored dataset. The performance of each method was evaluated using relative bias and relative root mean squared error (rMSE). Results: In the case of the largest sample size (n=300), when the censoring rate was less than 40%, the relative bias and rMSE were small for all five methods. When the censoring rate was large (70%, 90%), the simple substitution method was inappropriate because the relative bias was the largest, regardless of the sample size. When the sample size was small and the censoring rate was large, the Bayesian method, the β-substitution method, and the MLE method showed the smallest relative bias. Conclusions: The accuracy and precision of all methods tended to increase as the sample size was larger and the censoring rate was smaller. The simple substitution method was inappropriate when the censoring rate was high, and the β-substitution method, MLE method, and Bayesian method can be widely applied.

균형 랜덤 포레스트를 이용한 이륜차 보험사기 적발 모형 개발 (Bike Insurance Fraud Detection Model Using Balanced Randomforest Algorithm)

  • 김승훈;이수일;김태호
    • 디지털융복합연구
    • /
    • 제20권2호
    • /
    • pp.241-250
    • /
    • 2022
  • COVID-19 여파로 인한 비대면 서비스와 가정 재정 불안정성의 증가로 이륜차 보험사기 발생이 예상되고 있다. 이와 함께 보험사기 수법도 갈수록 교묘해지고 있다. 하지만 비대면 배달 수요와 연관된 이륜차 교통사고와 보험사기 적발 모형 관련 연구는 매우 미흡한 실정이다. 이에 본 연구는 보험사기의 표본 편중문제를 해결하기 위해 균형 랜덤포레스트 알고리즘을 이용하고 보험사기 조사 전문가의 정성적인 판단 기준을 반영한 변수를 모델에 포함하여 적용성을 향상시키며 적발력 높은 이륜차 보험사기 모형을 개발하고자 한다. 보험사기 적발 모형 개발 결과, 기존의 비균형 랜덤 포레스트 모형에 비해 균형 랜덤 포레스트가 보험 사기혐의자를 분류하는 데 있어 통계적으로 우수한 점을 확인할 수 있었다. 특히, 총 26개의 변수를 토대로 탐색적 변수 조합을 적용한 모형의 예측 성능이 가장 높았지만 일부 변수만을 사용한 확인적 모형의 예측 성능도 크게 떨어지지 않은 와중에, 정성적인 보험사기 전문가가 선정한 변수만을 사용한 확인적 모형은 예측력이 떨어지는 것을 확인하였다. 또한, 총 26개의 변수 중 운전자 성별, 연령, 운전자 피보험자 일치 여부, 미수선 청구금액, 대인보험금 등이 중요한 변수로 확인되어 이를 활용해 이륜차 보험사기 혐의자 선별을 위한 적극적인 대처가 필요해 보인다.

탄성파 및 전기비저항을 활용한 지하복합 플랜트 건설 후보지 탐사 (Site-Investigation of Underground Complex Plant Construction by Seismic Survey and Electrical Resistivity)

  • 김남선;이종섭;김기석;김상엽;박정희
    • 한국지반공학회논문집
    • /
    • 제38권10호
    • /
    • pp.49-60
    • /
    • 2022
  • 지상공간의 건설부지 부족 현상으로 인한 도심지 지하화가 진행되고 있으며, 이에 따른 건설부지의 정확한 지반특성 평가가 요구되고 있다. 본 논문에서는 지하공간을 활용한 복합플랜트 후보부지에 대한 지반특성 파악하고자 시추조사와 다양한 물리탐사 방법 중 지표 탐사인 탄성파 굴절법 탐사와 전기비저항 탐사를 수행하였다. 시추조사는 BH-1 ~ BH-9까지 총 9개 시추공에서 수행하였으며, 일정한 간격을 유지하여 각 공에서의 지하수위 및 지질구조의 수직분포 등에 대한 정보를 획득하였다. 탄성파 굴절법 탐사에서 각 지층의 구간별 속도 및 지층 두께를 측정하였으며, 전기비저항 탐사는 쌍극자 배열법을 이용하여 지층의 전기비저항 분포를 파악하였다. 시추조사 결과를 종합하여 대상지반의 토사층 분류 및 기반암선을 파악하였으며, 물리탐사 결과를 통해 파쇄대와 같은 이상대를 평가하였다. 본 논문은 시추조사와 물리탐사 기법을 활용하여 지하복합 플랜트 후보부지에 대한 지반특성 파악하였고, 향후 시추조사와 물리탐사를 병행하는 지반조사에 참고 자료로 쓰일 수 잇다는 점에서 의의가 있다.

인공지능 서비스 운영을 위한 시스템 측면에서의 연구 (A Study on the System for AI Service Production)

  • 홍용근
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.323-332
    • /
    • 2022
  • AI 기술을 활용한 다양한 서비스가 개발되면서, AI 서비스 운영에 많은 관심이 집중되고 있다. 최근에는 AI 기술도 하나의 ICT 서비스를 보고, 범용적인 AI 서비스 운영을 위한 연구가 많이 진행되고 있다. 본 논문에서는 일반적인 기계학습 개발 절차의 마지막 단계인 기계학습 모델 배포 및 운영에 초점을 두고 AI 서비스 운영을 위한 시스템 측면에서의 연구 결과를 기술하였다. 3대의 서로 다른 Ubuntu 시스템을 구축하고, 이 시스템상에서 서로 다른 AI 모델(RFCN, SSD-Mobilenet)과 서로 다른 통신 방식(gRPC, REST)의 조합으로 2017 validation COCO dataset의 데이터를 이용하여 객체 검출 서비스를 Tensorflow serving을 통하여 AI 서비스를 요청하는 부분과 AI 서비스를 수행하는 부분으로 나누어 실험하였다. 다양한 실험을 통하여 AI 모델의 종류가 AI 머신의 통신 방식보다 AI 서비스 추론 시간에 더 큰 영향을 미치고, 객체 검출 AI 서비스의 경우 검출하려는 이미지의 파일 크기보다는 이미지 내의 객체 개수와 복잡도에 따라 AI 서비스 추론 시간이 더 큰 영향을 받는다는 것을 알 수 있었다. 그리고, AI 서비스를 로컬이 아닌 원격에서 수행하면 성능이 좋은 머신이라고 하더라도 로컬에서 수행하는 경우보다 AI 서비스 추론 시간이 더 걸린다는 것을 확인할 수 있었다. 본 연구 결과를 통하여 서비스 목표에 적합한 시스템 설계와 AI 모델 개발 및 효율적인 AI 서비스 운영이 가능해질 것으로 본다.

소방사무의 국가사무로의 전환 필요성에 관한 연구 (A Study on the need of the Conversion of Fire Services to State Affairs)

  • 이재학;장성호
    • 한국콘텐츠학회논문지
    • /
    • 제21권7호
    • /
    • pp.281-290
    • /
    • 2021
  • 소방사무의 범위는 지역 화재예방에서 구조 및 구급 업무로 확대되었고, 소방체제는 자치소방체제에서 광역소방체제로 전환되었다, 또한 많은 논란의 대상이었던 소방공무원의 신분은 국가직으로 일원화되었다. 그러나 근본적인 문제가 여전히 미해결의 상태로 남아 있다. 바로 국가직으로 전환된 소방공무원의 자치사무인 소방사무 담당과 자치사무로 평가되는 소방사무의 국가사무로의 전환과 관련된 문제이다. 소방사무의 성격에 관한 논란은 국가와 자치단체 사이의 사무기능 및 배분의 조정에 대한 불분명과 중복성, 그리고 근본적으로 사무와 신분의 체계통일성을 이루지 못한 불완전한 입법에 기인한다. 소방사무는 국방 및 경찰사무와 함께 국가의 존립과 국민의 안녕과 질서를 포함하는 사무로서 국가적 책무가 존재한다. 국민의 생명, 신체 및 재산을 보호하는 국민의 안전과 관련된 소방사무는 국가사무로 이해되어야 한다. 지방자치법 상 지방자치단체는 법률에 다른 규정이 있는 경우 외에는 국가의 존립에 필요한 사무, 전국적으로 통일을 요하는 사무, 전국적 규모의 사무 등 국가사무를 처리할 수 없다고 규정하고 있다. 소방사무는 그와 같은 사무에 해당한다고 보아야 한다. 국민의 안전과 생명에 대한 권리와 그에 대한 보호 의무가 국가의 의무임을 고려한다면 소방공무원의 국가직화의 이유가 근본적으로 단지 처우와 재정의 문제가 아니었음을 유념할 필요가 있다.