• Title/Summary/Keyword: performance characterization

Search Result 1,052, Processing Time 0.026 seconds

Novel deposition technology for nano-crystalline silicon thin film at low temperature by hyper-thermal neutral beam assisted CVD system

  • Jang, Jin-Nyoung;Song, Byoung-Chul;Oh, Kyoung-Suk;Yoo, Suk-Jae;Lee, Bon-Ju;Choi, Soung-Woong;Park, Young-Chun;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1025-1027
    • /
    • 2009
  • Novel low temperature deposition process for nano-crystalline Si thin film is developed with the hyper-thermal neutral beam (HNB) technology. By our HNB assisted CVD system, the reactive particles can induce crystalline phase in Si thin films and effectively combine with heating effect on substrate. At low deposition temperature under $80^{\circ}C$, the HNB with proper incident energy controlled by the reflector bias can effectively enhance the nano-crystalline formation in Si thin film without any additional process. The electrical properties of Si thin films can be varied from a-Si to nc-Si according to change of HNB energy and substrate temperature. Characterization of these thin films with conductivity reveal that crystalline of Si thin film can increase by assist of HNB with appropriate energy during low temperature deposition. And low temperature prcoessed nc-Si TFT performance has on-off ratio as order 5.

  • PDF

A Study on The Fabrication and Electrochemical Characterization of Amorphous Vanadium Oxide Thin Films for Thin Film Micro-Battery (마이크로 박막 전지용 비정질 산화바나듐 박막의 제작 및 전기화학적 특성에 관한 연구)

  • 전은정;신영화;남상철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.634-637
    • /
    • 1999
  • The amorphous vanadium oxide as a cathode material is very preferable for fabricating high performance micro-battery. The amorphous vanadium oxide cathode is preferred over the crystalline form because three times more lithium ions can be inserted into the amorphous cathode, thus making a battery that has a higher capacity. The electrochemical properties of sputtered films are strongly dependent on the oxygen partial pressure in the sputtering gas. The effect of different oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by r.f. reactive sputtering deposition were investigated. The stoichiometry of the as-deposited films were investigated by Auger electro spectroscopy. X-ray diffraction and atomic force microscopy measurements were carried out to investigate structural properties and surface morphology, respectively. For high oxygen partial pressure(>30% ), the films were polycrystalline V$_2$O$_{5}$ while an amorphous vanadium oxide was obtained at the lower oxygen partial pressure(< 15%). Half-cell tests were conducted to investigate the electrochemical properties of the vanadium oxide film cathode. The cell capacity was about 60 $\mu$ Ah/$\textrm{cm}^2$ m after 200 cycle when oxygen partial pressure was 20%. These results suggested that the capacity of the thin film battery based on vanadium oxide cathode was strongly depends on crystallinity.y.

  • PDF

Development and Test results of the Dielectric Evaluation System for a Helium Gas Cooled HTS Cable (헬륨가스 냉각 고온초전도 케이블의 절연특성 평가 시스템 개발 및 성능평가)

  • Kwag, Dong-Soon;Rodrigo, Horatio
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • The novel type of cable under consideration is cooled by gaseous Helium at elevated pressure. Helium is known for having poor electric breakdown strength; therefore the dielectric capabilities of this type of cable must be tested under conditions similar to the envisaged operation. In order to study the dielectric performance we have designed and built a novel high pressure cryostat rated at 2.17 MPa which has been used for testing model cables of lengths of up to 1 m. The cryostat is an open system where the gas is not re-circulated. This allows maintaining a high purity of the gas. The target temperature range is between 40 K and 70 K. This substantially increases the critical current density of the HTS compared to 77 K, which is the typical temperature of cables cooled by liquid nitrogen. The cryostat presented allows for adjusting the temperature and keeping it constant for the time necessary to run a complete dielectric characterization test. We give a detailed description of the cryostat. Measurements of partial discharge inception voltages as well as the temperature distribution along the model cables as a function of time are presented.

Synthesis and Characterization of CdSe/CdS/N-Acetyl-L-Cysteine/Quercetin Nano-Composites and Their Antibacterial Performance

  • Wang, Kunjie;Li, Mingliang;Li, Hongxia;Guan, Feng;Zhang, Deyi;Feng, Huixia;Fan, Haiyan
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.136-141
    • /
    • 2015
  • We have discovered that quercetin, once coated on the CdSe and CdSe-CdS quantum dots (QDs), becoming highly water soluble. In the present work, we have successfully synthesized CdSe/CdS/N-Acetyl-L-Cysteine(NAC)/Quercetin nano-composites in the aqueous solution. The products were characterized using UV-vis spectroscopy, X-ray powder diffraction, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The transmission electron microscopy (TEM) tests indicated that our nano-composite products are highly stable with homogeneous particle size and great monodispersity. Quercetin coated nano-composite CdSe/CdS/NAC/Quercetin showed different fluorescence behavior from that of CdSe/CdS/NAC. Most amazingly, the synthesized CdSe/CdS/NAC/Quercetin nano-composite exhibits strong antibacterial activity. The combination of the strong fluorescence and its antibacterial activity makes the quercetin modified quantum dots as a potential candidate for cancer targeted therapy and other cancer treatments.

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E.
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.75-87
    • /
    • 2008
  • Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

Probabilistic-based assessment of composite steel-concrete structures through an innovative framework

  • Matos, Jose C.;Valente, Isabel B.;Cruz, Paulo J.S.;Moreira, Vicente N.
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1345-1368
    • /
    • 2016
  • This paper presents the probabilistic-based assessment of composite steel-concrete structures through an innovative framework. This framework combines model identification and reliability assessment procedures. The paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The developed model identification algorithm is then presented. During this procedure, the model parameters are automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure performance, considering randomness in model parameters. Since monitoring and characterization tests are common measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained results from the proposed framework, are respectively present.

Influencing factors on electrical conductivity of compacted kaolin clay

  • Lee, J.K.;Shang, J.Q.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.131-151
    • /
    • 2011
  • The electrical conductivity of a soil-water system is related to its engineering properties. By measuring the soil electrical conductivity, one may obtain quantitative, semi-quantitative, or qualitative information to estimate the in-situ soil behavior for site characterization. This paper presents the results of electrical conductivity measured on compacted kaolin clay samples using a circular two-electrode cell in conjunction with a specially designed compaction apparatus, which has the advantage of reducing errors due to sample handling and increasing measurement accuracy. The experimental results are analyzed to observe the effects of various parameters on soil electrical conductivity, i.e. porosity, unit weight, water content and pore water salinity. The performance of existing analytical models for predicting the electrical conductivity of saturated and unsaturated soils is evaluated by calculating empirical constants in these models. It is found that the Rhoades model gives the best fit for the kaolin clay investigated. Two general relationships between the formation factor and soil porosity are established based on the experimental data reported in the literature and measured from this study for saturated soils, which may provide insight for understanding electrical conduction characteristics of soils over a wide range of porosity.

Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure

  • Ebrahimi, Saeed;Salahshoor, Esmaeil;Moradi, Shapour
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.691-702
    • /
    • 2017
  • Clearances are essential for the assemblage of mechanisms to allow the relative motion between the joined bodies. This clearance exists due to machining tolerances, wear, material deformations, and imperfections, and it can worsen the mechanism performance when the precision and smoothly-working are intended. Energy is a subject which is less paid attention in the area of clearance. The effect of the clearance on the energy of a flexible slider-crank mechanism is investigated in this paper. A clearance exists in the joint between the slider and the coupler. The contact force model is based on the Lankarani and Nikravesh model and the friction force is calculated using the modified Coulomb's friction law. The hysteresis damping which has been included in the contact force model dissipates energy in clearance joints. The other source for the energy loss is the friction between the journal and the bearing. Initial configuration and crank angular velocity are changed to see their effects on the energy of the system. Energy diagrams are plotted for different coefficients of friction to see its influence. Finally, considering the coupler as a flexible body, the effect of flexibility on the energy of the system is investigated.

Sensor-less Speed Control of PMSM for Driving Oil-free Air Compressor (무급유식 공기압축기 구동을 위한 영구자석 동기 모터의 센서리스 속도제어)

  • Kin, Min Ho;Yang, Oh;Kim, Youn Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • This paper suggests the sensor-less speed control of PMSM (Permanent Magnet Synchronous Motor) without the position sensor of oil-free air compressor. It estimated d and q axis back electro motive force using Back-EMF (Electro motive Force) observer to control sensor-less speed of PMSM. Also it used the method that tracks the information of rotor position and speed using PLL (Phase Locked Loop) based on estimated d and q axis Back-EMF. The sensor-less speed control of PMSM for oil air compressor application is carried out with the introduced rotor position and speed tracking method. In this paper, the experimental characterization of the sensor-less drive is provided to verify the accuracy of the estimated position and the performance of sensor-less control is analyzed by results obtained from the experiment. Moreover, the potential of PMSM sensor-less drive in industrial application such as compressor drive is also examined.

Robust Transmission Waveform Design for Distributed Multiple-Radar Systems Based on Low Probability of Intercept

  • Shi, Chenguang;Wang, Fei;Sellathurai, Mathini;Zhou, Jianjiang;Zhang, Huan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.70-80
    • /
    • 2016
  • This paper addresses the problem of robust waveform design for distributed multiple-radar systems (DMRSs) based on low probability of intercept (LPI), where signal-to-interference-plus-noise ratio (SINR) and mutual information (MI) are utilized as the metrics for target detection and information extraction, respectively. Recognizing that a precise characterization of a target spectrum is impossible to capture in practice, we consider that a target spectrum lies in an uncertainty class bounded by known upper and lower bounds. Based on this model, robust waveform design approaches for the DMRS are developed based on LPI-SINR and LPI-MI criteria, where the total transmitting energy is minimized for a given system performance. Numerical results show the effectiveness of the proposed approaches.