• Title/Summary/Keyword: performance characterization

Search Result 1,052, Processing Time 0.023 seconds

Preparation, Characterization and Catalytic Performance of Ionic Liquid Immobilized onto Polystyrene-based Polymer for the Synthesis of Allyl Glycidyl Carbonate (폴리스티렌계 고분자에 고정화된 이온성 액체 촉매의 제조와 알릴글리시딜카보네이트 합성 반응 특성)

  • Lee, Mi-Kyung;Choi, Hye-Ji;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.621-626
    • /
    • 2010
  • In this study, imidazole-based ionic liquid on polystyrene was prepared and its catalytic performance in the cycloaddition of $CO_2$ with allyl glycidyl ether(AGE) to produce allyl glycidyl carbonate was investigated. The ionic liquid was generated on the polystyrene-based polymer through the immobilization of imidazole. The prepared catalyst was characterized using a number of instrumental analysis including EA, FT-IR, TGA and SEM. The immobilized ionic liquid showed very good catalytic activity for the cycloaddition of $CO_2$ with AGE, having 80% of AGE conversion with over 96% of the carbonate selectivity at $120^{\circ}C$ under 1.48 MPa $CO_2$ pressure. The immobilized ionic liquid can be used for the reaction up to four consecutive runs without significant loss of its catalytic activity.

Characterization of Seawater Electrolysis of Insoluble Catalytic Electrodes Fabricated by RF Magnetron Sputtering (RF Magnetron Sputtering을 이용하여 제작한 불용성 촉매전극의 해수전기분해 특성)

  • Lee, Hyun-Seok;Kim, Sei-Ki;Seok, Hye-Won;Kim, Jin-Ho;Choi, Hun-Jin;Jung, Ha-Ik
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Insoluble catalytic electrodes were fabricated by RF magnetron sputtering of Pt on Ti substrates and the performance of seawater electrolysis was compared in these electrodes to that is DSA electrodes. The Pt-sputtered insoluble catalytic electrodes were nearly 150 nm-thick with a roughness of $0.18{\mu}m$, which is 1/660 and 1/12 of these values for the DSA (dimensionally stable anodes) electrodes. The seawater electrolysis performance levels were determined through measurements of the NaOCl concentration, which was the main reaction product after electrolysis using artificial seawater. The NaOCl concentration after 2 h of electrolysis with artificial seawater, which has 3.5% NaCl normally, at current densities of 50, 80 and 140 mA/$cm^2$ were 0.76%, 1.06%, and 2.03%, respectively. A higher current density applied through the electrodes led to higher electrolysis efficiency. The efficiency reached nearly 58% in the Pt-sputtered samples after 2 h of electrolysis. The reaction efficiency of DSA showed higher values than that of the Pt-sputtered insoluble catalytic electrodes. One plausible reason for this is the higher specific surface area of the DSA electrodes; the surface cracks of the DSAs resulted in a higher specific surface area and higher reaction sites. Upon the electrolysis process, some Mg- and Ca-hydroxides, which were minor components in the artificial seawater, were deposited onto the surface of the electrodes, resulting in an increase in the electrical resistances of the electrodes. However, the extent of the increase ranged from 4% to 7% within an electrolysis time of 720 h.

Synthesis characterization of a high conductivity LSCF cathode materials and electrochemical studies for IT-SOFC (중.저온 고체산화물 연료전지용 고전도성 공기극 소재 합성 및 전기화학적 특성 평가)

  • Kim, Hyoshin;Lee, Jongho;Kim, Ho-Sung;Lee, Yunsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • LSM is widely used as a cathode material in SOFC, because of its high electrochemical activity, good stability and compatibility with YSZ electrolyte at high temperature. However, LSM in traditional cathode materials will not generate a satisfactory performance at intermediate temperature. In order to reduce the polarization resistance of cell with the operating temperature of SOFC system, the cathode material of LSCF is one of the most suitable electrode materials because of its high mixed ionic and electronic conductivity. In this report, cathode material, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ powder for intermediate temperature SOFC was synthesized by Pechini method using the starting materials such as nitrate of La, Sr, Co and Fe including ethylene glycol, etc. As a result, the synthesized powder that calcined above $700^{\circ}C$ exhibits successfully perovskite structure, indicating phase-pure of LSCF. Moreover, the particle size, surface area, crystal structure and morphology of the synthesized oxide powders were characterized by SEM, XRD, and BET, etc. In order to evaluate the electrochemical performance for the synthesized powder, slury mixture using the synthesized cathode material was coated by screen-printing process on the anode-supported electrolyte which was prepared by a tape casting method and co-sintering. Finally, electrochemical studies of the SOFC unit cell, including measurements such as power density and impedance, were performed.

  • PDF

Characterization of gene expression and genetic variation of horse ERBB receptor feedback inhibitor 1 in Thoroughbreds

  • Choi, Jae-Young;Jang, Hyun-Jun;Park, Jeong-Woong;Oh, Jae-Don;Shin, Donghyun;Kim, Nam Young;Oh, Jin Hyeog;Song, Ki-Duk;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.309-315
    • /
    • 2018
  • Objective: This study aimed to test the expression patterns of ERBB receptor feedback inhibitor 1 (ERRFI1) before and after exercise and the association of non-synonymous single-nucleotide polymorphisms (nsSNPs) of horse ERRFI1 with racing traits in Thoroughbreds. Methods: We performed bioinformatics and gene expression analyses for horse ERRFI1. Transcription factor (TF) binding sites in the 5'-regulatory region of this gene were identified through a tool for prediction of TF-binding site (PROMO). A general linear model was used to detect the association between the nsSNP (LOC42830758 A to G) and race performance. Results: Quantitative polymerase chain reaction analysis showed that expression level of ERRFI1 after exercise was 1.6 times higher than that before exercise. Ten transcription factors were predicted from the ERRFI1 regulatory region. A novel nsSNP (LOC42830758 A to G) was found in ERRFI1, which was associated with three racing traits including average prize money, average racing index, and 3-year-old starts percentile ranking. Conclusion: Our analysis will be helpful as a basis for studying genes and SNPs that affect race performance in racehorses.

Purification and Characterization of Lysyl Oxidase from Fetal Bovine Aorta in the presence of protease inhibitors -Evidence against polymorphism- (소(牛) 태아(胎兒) 대동맥(大動脈)으로부터 단백 분해효소 억제제 존제 하에 Lysyl Oxidase의 순수분리(純棒分離) -다양성(多形性)에 대(對)한 반론(反論)-)

  • Han, Song
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • Lysyl Oxidase from fetal bovine aorta was purified to homogenity using extraction, Sephacryl S200HR chromatography, Hydropore AX ion-exchange high performance liquid column chromatography, Cibacron blue affinity chromatography, and Sephacryl S-300 HR chromatography in the presence of protease inhibitor. The purified enzyme was active toward lathyritic collagen as well as elastin and was sensitive to aminonitriles such as BAPN. Upon Sephacryl S-300 HR chromatography, the enzyme was eluted as a peak with a $K_{av}$ value of 0.45 (65% of $V_t$ ) and it eluted from high performance liquid ion-exchange column (Hydropore |AX) at single position (ionic strength, I = 0.1~0.15). Once purified, it showed one band upon SDS-PAGE. It migrated to a band the mobility of which corresponded to a Mr of 33,500 upon reduction while it migrated to a 24,500 Mr position under the non-reducing condition. In constrast to other reports, it is concluded that fetal bovine aorta contains only one type of lysy oxidase.

  • PDF

Polarity-tuned Gel Polymer Electrolyte Coating of High-voltage LiCoO2 Cathode Materials

  • Park, Jang-Hoon;Cho, Ju-Hyun;Kim, Jong-Su;Shim, Eun-Gi;Lee, Yun-Sung;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • We demonstrate a new surface modification of high-voltage lithium cobalt oxide ($LiCoO_2$) cathode active materials for lithium-ion batteries. This approach is based on exploitation of a polarity-tuned gel polymer electrolyte (GPE) coating. Herein, two contrast polymers having different polarity are chosen: polyimide (PI) synthesized from thermally curing 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid (as a polar GPE) and ethylene-vinyl acetate copolymer (EVA) containing 12 wt% vinyl acetate repeating unit (as a less polar GPE). The strong affinity of polyamic acid for $LiCoO_2$ allows the resulting PI coating layer to present a highly-continuous surface film of nanometer thickness. On the other hand, the less polar EVA coating layer is poorly deposited onto the $LiCoO_2$, resulting in a locally agglomerated morphology with relatively high thickness. Based on the characterization of GPE coating layers, their structural difference on the electrochemical performance and thermal stability of high-voltage (herein, 4.4 V) $LiCoO_2$ is thoroughly investigated. In comparison to the EVA coating layer, the PI coating layer is effective in preventing the direct exposure of $LiCoO_2$ to liquid electrolyte, which thus plays a viable role in improving the high-voltage cell performance and mitigating the interfacial exothermic reaction between the charged $LiCoO_2$ and liquid electrolytes.

Study on Characterization of Solid Oxide Fuel Cell Subjected to Load Treatments (로드 조건에 따른 고체산화물 연료전지 전극 활성화 분석연구)

  • Ahn, Kwon-Sung;Choi, Hoon;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2011
  • Evidence on the effect of $O_2$ reduction or current passage on the microstructure and morphology of the LSM and Ni-YSZ electrodes in solid oxide fuel cells. The microstructures of the electrodes were characterized as plate-like agglomerates. Current of $0.1\;A/cm^2$, $0.2\;A/cm^2$, $0.3\;A/cm^2$, at $800^{\circ}C$ were passed for 3 h. Then, we observed the cell structure and measured the cell performance before and after the experiment. There are changed with the load condition. The TPB of the cell increased when the cell structure changed. In particular, the decrease in activation loss is apparent as load increased. As a result, cell performance improved, and we confirmed that a optimal load condition existed.

Surface Characterization of NF membranes for Hardness Removal and Its Implications to Fouling Mechanisms (경도제거용 나노여과막의 표면 특성 분석 및 막오염기작 연구)

  • Ham, Sangwoo;Kim, Youngjin;Kim, Chunghwan;Shon, Hokyong;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.559-567
    • /
    • 2013
  • In recent years, NF (nanofiltration) membrane has been receiving great attention for hardness removal and has begun to replace traditional lime soda ash softening process, particularly in Florida, USA, mainly due to less sludge production and easy operation. This study aimed to provide detailed surface characteristics of various commercial NF membranes by performing sophisticated surface analysis, which would help more fundamentally understand the performance of NF membranes. More specifically, a total of 7 NF membranes from top NF/RO manufacturers in the world were examined for basic performance tests, surface analysis, and fouling potential assessment. The results demonstrated that NF membranes are classified into two groups in terms of surface zeta potential; they are highly negatively charged ones, and neutral and/or less negatively charged ones. Their hydrophobicities, measured by contact angle, varied from hydrophilic to slightly hydrophobic ones. The AFM measurements showed various surface roughness, ranging from 23 nm (smooth) to 162 nm (rough) of average peak height. Lab-scale fouling experiments were performed using feedwater obtained from conventional water treatment plants in the province of Korea, and their results attempted to correlate to surface characteristics of NF membranes. However, unlike typical RO membranes, no clear correlation was found in this study, indicating that fouling mechanisms of NF membrane may be different from those of typical RO membranes, and both cake deposition and pore blocking mechanisms should be considered simultaneously.

Preparation and Characterization of Mixed Matrix Membrane Consisting of Polyethersulfone and ZnO Nanoparticles (Polyethersulfone과 ZnO 나노입자로 조성된 혼합기질막의 제조와 특성 평가)

  • Lee, Seung-Hun;Lee, Min-Su;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.463-469
    • /
    • 2016
  • In this research, a new expectation in enhancing the PES (polyethersulfone) polymer phase inversion membrane performances with nanoparticles is proposed by using ZnO. This paper investigated the synthesis of PES phase inversion membranes including ZnO nanoparticles and evaluates the performance of these mixed matrix membranes. The PES-ZnO mixed matrix membranes were fabricated by phase inversion method using the PES-ZnO-NMP(N-methyl-1-pyrrolidone) casting solutions with low ZnO nanoparticles content of 0.375 wt%. The influence of ZnO nanoparticles on the characteristics of PES-ZnO mixed matrix membranes was investigated with scanning electron microscope observations of membrane cross-sections, contact angle measurements, tensile strength measurements, pure water flux measurements and ultrafiltration experiments of BSA solution. Those results showed that the performance advancements in comparison with the pure PES membrane without ZnO in terms of increasing hydrophilicity as well as reducing membrane fouling by adding ZnO nanoparticles even in low concentration.

Performance Analysis of Wireless Communication System with FSMC Model in Nakagami-m Fading Channel (Nakagami-m 페이딩 채널에서 FSMC 모델에 의한 무선 통신시스템의 성능 분석)

  • 조용범;노재성;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1010-1019
    • /
    • 2004
  • In this paper, we represent Nakagami-m fading channel as finite-State Markov Channel (FSMC) and analyze the performance of wireless communication system with varying the fading channel condition. In FSMC model, the received signal's SNR is divided into finite intervals and these intervals are formed into Markov chain states. Each state is modeled by a BSC and the transition probability is dependent upon the physical characterization of the channel. The steady state probability and average symbol error rate of each state and transition probability are derived by numerical analysis and FSMC model is formed with these values. We found that various fading channels can be represented with FSMC by changing state transition index. In fast fading environment in which state transition index is large, the channel can be viewed as i.i.d. channel and on the contrary, in slow fading channel where state transition index is small, the channel can be represented by simple FSMC model in which transitions occur between just adjacent states. And we applied the proposed FSMC model to analyze the coding gain of random error correcting code on various fading channels via computer simulation.