• Title/Summary/Keyword: performance based plastic design

Search Result 179, Processing Time 0.019 seconds

Finite Element Analysis on the Dynamic Behavior of a Cylindrical Brake Device with Plastic Deformation (소성변형을 갖는 원통형 제동장치의 동적거동에 관한 유한요소해석)

  • 김지철;이학렬;심우전
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.199-204
    • /
    • 2000
  • A cylindrical brake device with plastic deformation is designed to stop the object moving at high velocity. Baseline model is determined based on the design specification and analytic solutions. Using finite element method, effects of various design parameters, such as thickness of the cylinder, clearance between cylinder and rod, and cone angle, to the performance of the brake device are investigated. Cone-type brake device shows better performance than cylindrical brake device with constant thickness in that plastic hinges are generated sequentially from impact end to fixed boundary, thus increasing the reliability of braking operation.

  • PDF

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.

The Suggestion of Seismic Performance Values on Connections for Performance Based Design of Steel Structures (강구조 성능기반설계를 위한 접합부의 내진성능평가치 제안)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Lee, Jin-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.147-158
    • /
    • 2011
  • The purpose of this research was to analyze the connections of the seismic-performance values for domestic-performance-based designs. Basic research on the performance design method has been increasing of late, along with performance-based organization investigations. These investigations concern the performance level state of steel structure buildings. According to the performance limit state, seismic-performance values should be presented as appropriate steel structure engineering amounts. The first step, based on the full-scale steel structure experiments, involves researching on the making of a basic document. The moment-rotation angle relationship results of the experiment on the moment-frame connection were used to assort the functional and undamaged limits, which were assumed to be less than the yield moment. Moreover, the repairable and safety limits, which were assumed to exist between the yield and maximum moments, were assorted by investigating the accumulated plastic deformation ratio.

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

Performance-based optimization of 2D reinforced concrete wall-frames using pushover analysis and ABC optimization algorithm

  • Saba Faghirnejad;Denise-Penelope N. Kontoni;Mohammad Reza Ghasemi
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.285-302
    • /
    • 2024
  • Conducting nonlinear pushover analysis typically demands intricate and resource-intensive computational efforts, involving a highly iterative process necessary for meeting both design-defined and requirements of codes in performance-based design. This study presents a computer-based technique for reinforced concrete (RC) buildings, incorporating optimization numerical approaches, optimality criteria and pushover analysis to automatically enhance seismic design performance. The optimal design of concrete beams, columns and shear walls in concrete frames is presented using the artificial bee colony optimization algorithm. The methodology is applied to three frames: a 4-story, an 8-story and a 12-story. These structures are designed to minimize overall weight while satisfying the levels of performance including Life Safety (LS), Collapse Prevention (CP), and Immediate Occupancy (IO). The process involves three main steps: first, optimization codes are implemented in MATLAB software, and the OpenSees software is used for nonlinear static analysis. By solving the optimization problem, several top designs are obtained for each frame and shear wall. Pushover analysis is conducted considering the constraints on relative displacement and plastic hinge rotation based on the nonlinear provisions of the FEMA356 nonlinear provisions to achieve each level of performance. Subsequently, convergence, pushover, and drift history curves are plotted for each frame, and leading to the selection of the best design. The results demonstrate that the algorithm effectively achieves optimal designs with reduced weight, meeting the desired performance criteria.

A lateral load pattern based on energy evaluation for eccentrically braced frames

  • Fakhraddini, Ali;Fadaee, Mohammad Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.623-632
    • /
    • 2018
  • Performance-Based Plastic Design (PBPD) method has been recently developed to evaluate the behavior of structures in different performance levels. The PBPD method utilizes a base shear force and a lateral load pattern that are estimated based on energy and yielding mechanism concepts. Using of current lateral force pattern results in weak structural members in upper stories of a structure so that the values of the story drift in these stories are larger than the target drift, particularly in high-rise buildings. Therefore, such distribution requires modifications to overcome this drawback. This paper proposes a modified lateral load pattern for steel Eccentrically Braced Frames (EBFs) based on parametric study. In order to achieve the modified load pattern, a group of 26 EBFs has been analyzed under a set of 20 earthquake ground motions. Additionally, results of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to derive the new load pattern. To prove the efficiency of present study, three EBFs as examples were designed by modified pattern and current PBPD distribution. Inelastic dynamic analyses results showed that the story drifts using modified lateral load pattern were well within the target values in comparison with current pattern in PBPD, particularly where the effect of the height is significant. The modified load pattern reduces the possibility of underdesigning in upper levels and overdesigning in lower levels of the frames.

Evaluation of ground motion scaling methods on drift demands of energy-based plastic designed steel frames under near-fault pulse-type earthquakes

  • Ganjavi, Behnoud;Hadinejad, Amirali;Jafarieh, Amir Hossein
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.91-110
    • /
    • 2019
  • In the present study, the effects of six different ground motion scaling methods on inelastic response of nonlinear steel moment frames (SMFs) are studied. The frames were designed using energy-based PBPD approach with the design concept using pre-selected target drift and yield mechanism as performance limit state. Two target spectrums are considered: maximum credible earthquake spectrum (MCE) and design response spectrum (DRS). In order to investigate the effects of ground motion scaling methods on the response of the structures, totally 3216 nonlinear models including three frames with 4, 8 and 16 stories are designed using PBPD approach and then they are subjected to ensembles of ground motions including 42 far-fault and 90 near-fault pulse-type records which were scaled using the six different scaling methods in accordance to the two aforementioned target spectrums. The distributions of maximum inter-story drift over the height of the structures are computed and compared. Finally, the efficiency and reliability of each ground motion scaling method to estimate the maximum nonlinear inter-story drift of special steel moment frames designed by energy-based PBPD approach are statistically investigated, and the most suitable scaling methods with the lowest dispersion for two groups of earthquake ground motions are introduced.

Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure (플랜트 설비 지지용 대안 강구조 시스템의 내진성능)

  • Kwak, Byeong Hun;Ahn, Sook-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

Cyclic Seismic Performance of High-Strength Bolted-Steel Beam Splice (반복재하 실험에 의한 고력볼트 철골 보 이음부의 내진거동 연구)

  • 이철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.57-64
    • /
    • 1998
  • This paper presents the cyclic seismic performance of slip-critically designed, high-strength bolted-beam splice in steel moment frame. Before the moment connection reaching its plastic strength, unexpected premature slippage occurred at the slip-critically designed beam splice during the test. The experimentally observed frictional coefficients were as low as about 50% to 60% of nominal (code) value. Nevertheless, the bearing type behavior mobilized after the slippage transferred the increasing cyclic loads successfully, i.e., the consequence of slippage into bearing was not catastrophic to the connection behavior. The test result seems to indicate that the traditional beam splice design basing upon (bolt-hole deducted) effective flange area criterion may not be sufficient in developing the plastic strength of moment connections under severe earthquake loading. New procedure for achieving slip-critical beam splice design is proposed based on capacity design concept.

  • PDF

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Plastic Fire of Commercial Building (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 - 판매시설의 플라스틱 화재를 중심으로 -)

  • Jang, Hyo-Yeon;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.55-62
    • /
    • 2018
  • To improve the prediction result with enhanced reliability of domestic Performance-Based Design (PBD), actual scale fire tests were carried out on products made of plastics from sales facility combustibles. The commercial buildings were separated into single and multiple combustibles for the experimentation of fire spread caused by the sales shelves where the various combustible materials are displayed. A according to the maximum heat release rate, exposed area and weight of the combustible material, the results revealed a linear relationship of as 93% and 89%. In addition, analysis of the gas concentrations for various combustibles showed that $CO_2$ has a linear relationship, whereas the CO concentration indicated exponential function. These results can be applied to reliable fire source information in PBD of plastic fire source in commercial buildings. This may be applied as fire source information representative of a plastic fire in commercial buildings through additional experiment using the area of the shelf in actual commercial buildings.