• Title/Summary/Keyword: performance based logistic

Search Result 300, Processing Time 0.024 seconds

Bayesian Logistic Regression for Human Detection (Human Detection 을 위한 Bayesian Logistic Regression)

  • Aurrahman, Dhi;Setiawan, Nurul Arif;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.569-572
    • /
    • 2008
  • The possibility to extent the solution in human detection problem for plug-in on vision-based Human Computer Interaction domain is very attractive, since the successful of the machine leaning theory and computer vision marriage. Bayesian logistic regression is a powerful classifier performing sparseness and high accuracy. The difficulties of finding people in an image will be conquered by implementing this Bavesian model as classifier. The comparison with other massive classifier e.g. SVM and RVM will introduce acceptance of this method for human detection problem. Our experimental results show the good performance of Bavesian logistic regression in human detection problem, both in trade-off curves (ROC, DET) and real-implementation compare to SVM and RVM.

  • PDF

Comparison Study for Data Fusion and Clustering Classification Performances (다구찌 디자인을 이용한 데이터 퓨전 및 군집분석 분류 성능 비교)

  • 신형원;손소영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.601-604
    • /
    • 2000
  • In this paper, we compare the classification performance of both data fusion and clustering algorithms (Data Bagging, Variable Selection Bagging, Parameter Combining, Clustering) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are (1) correlation among input variables (2) variance of observation (3) training data size and (4) input-output function. Since the relationship between input & output is not typically known, we use Taguchi design to improve the practicality of our study results by letting it as a noise factor. Experimental study results indicate the following: Clustering based logistic regression turns out to provide the highest classification accuracy when input variables are weakly correlated and the variance of data is high. When there is high correlation among input variables, variable bagging performs better than logistic regression. When there is strong correlation among input variables and high variance between observations, bagging appears to be marginally better than logistic regression but was not significant.

  • PDF

Bayesian inference of the cumulative logistic principal component regression models

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.203-223
    • /
    • 2022
  • We propose a Bayesian approach to cumulative logistic regression model for the ordinal response based on the orthogonal principal components via singular value decomposition considering the multicollinearity among predictors. The advantage of the suggested method is considering dimension reduction and parameter estimation simultaneously. To evaluate the performance of the proposed model we conduct a simulation study with considering a high-dimensional and highly correlated explanatory matrix. Also, we fit the suggested method to a real data concerning sprout- and scab-damaged kernels of wheat and compare it to EM based proportional-odds logistic regression model. Compared to EM based methods, we argue that the proposed model works better for the highly correlated high-dimensional data with providing parameter estimates and provides good predictions.

A Study on Diabetes Management System Based on Logistic Regression and Random Forest

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • In the quest for advancing diabetes diagnosis, this study introduces a novel two-step machine learning approach that synergizes the probabilistic predictions of Logistic Regression with the classification prowess of Random Forest. Diabetes, a pervasive chronic disease impacting millions globally, necessitates precise and early detection to mitigate long-term complications. Traditional diagnostic methods, while effective, often entail invasive testing and may not fully leverage the patterns hidden in patient data. Addressing this gap, our research harnesses the predictive capability of Logistic Regression to estimate the likelihood of diabetes presence, followed by employing Random Forest to classify individuals into diabetic, pre-diabetic or nondiabetic categories based on the computed probabilities. This methodology not only capitalizes on the strengths of both algorithms-Logistic Regression's proficiency in estimating nuanced probabilities and Random Forest's robustness in classification-but also introduces a refined mechanism to enhance diagnostic accuracy. Through the application of this model to a comprehensive diabetes dataset, we demonstrate a marked improvement in diagnostic precision, as evidenced by superior performance metrics when compared to other machine learning approaches. Our findings underscore the potential of integrating diverse machine learning models to improve clinical decision-making processes, offering a promising avenue for the early and accurate diagnosis of diabetes and potentially other complex diseases.

Local Linear Logistic Classification of Microarray Data Using Orthogonal Components (직교요인을 이용한 국소선형 로지스틱 마이크로어레이 자료의 판별분석)

  • Baek, Jang-Sun;Son, Young-Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.587-598
    • /
    • 2006
  • The number of variables exceeds the number of samples in microarray data. We propose a nonparametric local linear logistic classification procedure using orthogonal components for classifying high-dimensional microarray data. The proposed method is based on the local likelihood and can be applied to multi-class classification. We applied the local linear logistic classification method using PCA, PLS, and factor analysis components as new features to Leukemia data and colon data, and compare the performance of the proposed method with the conventional statistical classification procedures. The proposed method outperforms the conventional ones for each component, and PLS has shown best performance when it is embedded in the proposed method among the three orthogonal components.

A Study on Life Cycle analysis and prediction of Contents Service in the Wireless Internet (로지스틱 회귀 모형을 이용한 무선인터넷 콘텐츠 서비스의 life cycle 분석 및 예측)

  • Park, Ji-Hong;Jeon, Joon-Hyeon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1161-1164
    • /
    • 2005
  • In this paper, we proposed the technique to estimate the life cycle of Internet content services based on the logistic regression model. In this paper, to define parameters of Internet contents estimating life cycle by logistic regression model, we used market size, traffic amount, page view and session-visit number as the parameters of Internet contents estimating life cycle by logistic regression model. In this paper, to compare the performance of our proposed scheme, we estimated life cycle for the download services of bell sound & character contents in mobile network. As a result, using our proposed logistic regression, we were able to estimate exactly the life cycle of the download services of bell sound & character contents.

  • PDF

Semiparametric kernel logistic regression with longitudinal data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.385-392
    • /
    • 2012
  • Logistic regression is a well known binary classification method in the field of statistical learning. Mixed-effect regression models are widely used for the analysis of correlated data such as those found in longitudinal studies. We consider kernel extensions with semiparametric fixed effects and parametric random effects for the logistic regression. The estimation is performed through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of optimal hyperparameters, cross-validation techniques are employed. Numerical results are then presented to indicate the performance of the proposed procedure.

Effect of zero imputation methods for log-transformation of independent variables in logistic regression

  • Seo Young Park
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.409-425
    • /
    • 2024
  • Logistic regression models are commonly used to explain binary health outcome variable using independent variables such as patient characteristics in medical science and public health research. Although there is no distributional assumption required for independent variables in logistic regression, variables with severely right-skewed distribution such as lab values are often log-transformed to achieve symmetry or approximate normality. However, lab values often have zeros due to limit of detection which makes it impossible to apply log-transformation. Therefore, preprocessing to handle zeros in the observation before log-transformation is necessary. In this study, five methods that remove zeros (shift by 1, shift by half of the smallest nonzero, shift by square root of the smallest nonzero, replace zeros with half of the smallest nonzero, replace zeros with the square root of the smallest nonzero) are investigated in logistic regression setting. To evaluate performances of these methods, we performed a simulation study based on randomly generated data from log-normal distribution and logistic regression model. Shift by 1 method has the worst performance, and overall shift by half of the smallest nonzero method, replace zeros with half of the smallest nonzero method, and replace zeros with the square root of the smallest nonzero method showed comparable and stable performances.

Differentiating Uterine Sarcoma From Atypical Leiomyoma on Preoperative Magnetic Resonance Imaging Using Logistic Regression Classifier: Added Value of Diffusion-Weighted Imaging-Based Quantitative Parameters

  • Hokun Kim;Sung Eun Rha;Yu Ri Shin;Eu Hyun Kim;Soo Youn Park;Su-Lim Lee;Ahwon Lee;Mee-Ran Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.43-54
    • /
    • 2024
  • Objective: To evaluate the added value of diffusion-weighted imaging (DWI)-based quantitative parameters to distinguish uterine sarcomas from atypical leiomyomas on preoperative magnetic resonance imaging (MRI). Materials and Methods: A total of 138 patients (age, 43.7 ± 10.3 years) with uterine sarcoma (n = 44) and atypical leiomyoma (n = 94) were retrospectively collected from four institutions. The cohort was randomly divided into training (84/138, 60.0%) and validation (54/138, 40.0%) sets. Two independent readers evaluated six qualitative MRI features and two DWI-based quantitative parameters for each index tumor. Multivariable logistic regression was used to identify the relevant qualitative MRI features. Diagnostic classifiers based on qualitative MRI features alone and in combination with DWI-based quantitative parameters were developed using a logistic regression algorithm. The diagnostic performance of the classifiers was evaluated using a cross-table analysis and calculation of the area under the receiver operating characteristic curve (AUC). Results: Mean apparent diffusion coefficient value of uterine sarcoma was lower than that of atypical leiomyoma (mean ± standard deviation, 0.94 ± 0.30 10-3 mm2/s vs. 1.23 ± 0.25 10-3 mm2/s; P < 0.001), and the relative contrast ratio was higher in the uterine sarcoma (8.16 ± 2.94 vs. 4.19 ± 2.66; P < 0.001). Selected qualitative MRI features included ill-defined margin (adjusted odds ratio [aOR], 17.9; 95% confidence interval [CI], 1.41-503, P = 0.040), intratumoral hemorrhage (aOR, 27.3; 95% CI, 3.74-596, P = 0.006), and absence of T2 dark area (aOR, 83.5; 95% CI, 12.4-1916, P < 0.001). The classifier that combined qualitative MRI features and DWI-based quantitative parameters showed significantly better performance than without DWI-based parameters in the validation set (AUC, 0.92 vs. 0.78; P < 0.001). Conclusion: The addition of DWI-based quantitative parameters to qualitative MRI features improved the diagnostic performance of the logistic regression classifier in differentiating uterine sarcomas from atypical leiomyomas on preoperative MRI.

Estimation of Asymmetric Bell Shaped Probability Curve using Logistic Regression (로지스틱 회귀모형을 이용한 비대칭 종형 확률곡선의 추정)

  • 박성현;김기호;이소형
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2001
  • Logistic regression model is one of the most popular linear models for a binary response variable and used for the estimation of probability function. In many practical situations, the probability function can be expressed by a bell shaped curve and such a function can be estimated by a second order logistic regression model. However, when the probability curve is asymmetric, the estimation results using a second order logistic regression model may not be precise because a second order logistic regression model is a symmetric function. In addition, even if a second order logistic regression model is used, the interpretation for the effect of second order term may not be easy. In this paper, in order to alleviate such problems, an estimation method for asymmetric probabiity curve based on a first order logistic regression model and iterative bi-section method is proposed and its performance is compared with that of a second order logistic regression model by a simulation study.

  • PDF