• 제목/요약/키워드: perfect plasticity

검색결과 36건 처리시간 0.026초

A collapse Stress Analysis of a Heat Exchanger Subjected to External Pressure in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Woo, Seung-Wan
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1216-1224
    • /
    • 2000
  • The collapse pressure of tubes is determined experimentally by Tschoepe and Maison for various materials with different geometries. The results are compared with those obtained by ASME Codes UG-31 and UG-28. A collage pressure is the pressure required for the incipient yielding stress of the tubes with and without ovality. This collapse pressure is compared with the experimental results by Tschoepe and Maison. The present investigation is towards finding the collapse pressure required to bring the entire wall of tubes into a state of plastic flow for the pipes, with ovality and without ovality. This collapse pressure is compared with the collapse pressure obtained through experiments in the present investigation. The experimental results are compared with the pressure obtained by FEM(finite element methods). The FEM results are then compared with results obtained through an approximate plastic analysis of the strain hardening material, SA312-TP304 stainless steel. The structural integrity evaluation is performed for the heat exchanger used in an actual nuclear power plant by using various methods described in this paper. The results obtained by the various analyses and the FEM are discussed. consequently, the paper is oriented towards an actual design purpose of d heat exchanger in an industrial environment, rather than for the purpose of an academic research project investigation.

  • PDF

Theoretical and experimental study on load-carrying capacity of combined members consisted of inner and sleeved tubes

  • Hu, Bo;Gao, Boqing;Zhan, Shulin;Zhang, Cheng
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.129-144
    • /
    • 2013
  • Load-carrying capacity of combined members consisted of inner and sleeved tubes subjected to axial compression was investigated in this paper. Considering the initial bending of the inner tube and perfect elasto-plasticity material model, structural behavior of the sleeved member was analyzed by theoretic deduction, which could be divided into three states: the elastic inner tube contacts the outer sleeved tube, only the inner tube becomes plastic and both the inner and outer sleeved tubes become plastic. Curves between axial compressive loads and lateral displacements of the middle sections of the inner tubes were obtained. Then four sleeved members were analyzed through FEM, and the numerical results were consistent with the theoretic formulas. Finally, experiments of full-scale sleeved members were performed. The results obtained from the theoretical analysis were verified against experimental results. The compressive load-lateral displacement curves from the theoretical analysis and the tests are similar and well indicate the point when the inner tube contacts the sleeved tube. Load-carrying capacity of the inner tube can be improved due to the sleeved tube. This paper provides theoretical basis for application of the sleeved members in reinforcement engineering.

Numerical modelling for monitoring the hysteretic behaviour of CFRP-retrofitted RC exterior beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.27-37
    • /
    • 2011
  • This paper presents the results of a study on the capability of nonlinear quasi-static finite element modelling in simulating the hysteretic behaviour of CFRP and GFRP-retrofitted RC exterior beam-column joints under cyclic loads. Four specimens including two plain and two CFRP/GFRP-strengthened beam-column joints tested by Mahini and Ronagh (2004) and other researchers are modelled using ANSYS. Concrete in compression is defined by the modified Hognestad model and anisotropic multi-linear model is employed for modelling the stress-strain relations in reinforcing bars while anisotropic plasticity is considered for the FRP composite. Both concrete and FRP are modelled using solid elements whereas space link elements are used for steel bars considering a perfect bond between materials. A step by step load increment procedure to simulate the cyclic loading regime employed in the testing. An automatically reforming stiffness matrix strategy is used in order to simulate the actual seismic performance of the RC concrete after cracking, steel yielding and concrete crushing during the push and pull loading cycles. The results show that the hysteretic simulation for all specimens is satisfactory and therefore suggest that the numerical model can be used as an inexpensive tool to design of FRP-strengthened RC beam-column joints under cyclic loads.

알루미늄 후판을 이용한 Moss Spherical 타입의 LNG탱크 곡면 성형해석 및 스프링백 예측 (Forming Analysis of A5083 Thick Plate for Moss Spherical LNG Tank and Prediction of Springback)

  • 윤종헌;전효원;이정환;김병민
    • 소성∙가공
    • /
    • 제21권5호
    • /
    • pp.305-311
    • /
    • 2012
  • One of the main methods of building LNG tankers uses the Moss spherical tank design since it can be precisely analyzed with respect to reliability and safety of construction by stress analysis. Aluminum alloy 5083 is generally used in the Moss spherical tank design for the wall in constructing the LNG tanker. This aluminum alloy does not have low temperature brittleness, but has good corrosion resistance, good weldability, and excellent material properties for the application. The Moss spherical tank is constructed with several sections of A5083 thick plate with curved surfaces, which are welded together. It is essential to predict the amount of springback for the deformed thick plates in design to insure a reliable construction because the structure needs to be assembled into a perfect sphere. Unless the initial construction meets the design, there are additional processing costs for reworking to meet the specifications as well as a cost penalty paid to a consumer. In this paper, FE analyses were conducted to predict the amount of springback for various forming conditions and forming processes. The various forming processes were evaluated with respect to reducing springback and compared with the conventional forming process used for curved surfaces of thick Al plate.

열간압연 공정에서 롤 프로파일 예측모델 향상 (Improvement of Roll Profile Prediction Model in Hot Strip Rolling)

  • 정제숙;유종우;박해두
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.250-253
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them.

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

외적 포스트텐셔닝 강봉으로 보강된 철근콘크리트 보의 ABAQUS를 이용한 비선형해석 (Nonlinear Analysis using ABAQUS Software of Reinforced Concrete (RC) Beams Strengthened with Externally Post-tensioning Steel Rods)

  • 이수헌;신경재;김진욱;이희두
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.11-17
    • /
    • 2018
  • Concrete is the well-used material in many architectural and civil structures. The behavior of concrete does exhibit a different characteristic in compression and tension, and it also shows an inelastic-nonlinear behavior. In addition, the concrete properties vary slightly depending on the environmental factor and manufacturer. These properties of concrete make the modeling or simulation of concrete material difficult. In reinforced concrete, particularly, there is a difficulty in bond-slip relationship between concrete and steel. However, in this paper, reserving remainder of these limits the finite element analysis for reinforced concrete beams through ABAQUS simulation has been carried out with some assumptions. Assumptions include the perfect bond of steel and concrete as well as the concrete damaged plasticity (CDP) in concrete property. There is a reasonable agreement between the experimental and numerical results, although the analytical strength and external rod deformation are slightly overestimated. The average and standard deviation between two results are 1.05 and 0.05, respectively. And the models and the computations lead to the evolution of fracture in bending beam.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

하중전이기법을 이용한 매입말뚝의 하중-침하 거동특성 (Characteristics of Load-Settlement Behaviour for Embeded Piles Using Load-Transfer Mechanism)

  • 오세욱
    • 한국지반환경공학회 논문집
    • /
    • 제2권4호
    • /
    • pp.51-61
    • /
    • 2001
  • 본 논문에서는 지반의 상대다짐도(RC)와 매입말뚝의 근입비에 따른 하중-침하 거동을 연구하기 위하여 모형실험과 하중전이 함수를 이용한 해석을 수행하였다. 모형시험에서 말뚝은 근입비(L/D)를 15, 20, 25로 설치하였고, 지반의 상대다짐도를 85%, 95%로 각각 조성하였으며 말뚝주면은 시멘트를 주입하였다. 본 논문은 매입말뚝의 해석을 위하여 Vijayvergia의 하중전이 모델, Castelli 모델, Gwizdala의 탄소성-완전소성 모델, coyle의 제안식 등을 사용하여 실험결과와 비교하였으며, 매입말뚝의 하중-침하 거동을 예측하는데 가장 적합한 하중전이 방법을 제안하였다. 하중전이 함수에 의한 지지력 예측 결과 매입말뚝의 극한 지지력은 Coyle의 제안식이 실측값에 가장 근접한 것으로 나타났으며, 초기 하중-침하 거동은 Castelli에 의한 함수가 가장 유사하게 하중-침하 거동을 평가하는 것으로 나타났다. 매입말뚝의 축하중 해석결과 하중전이법에 의해 평가된 주면마찰력이 실측값보다 과소평가 되는 것으로 나타났다.

  • PDF

강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가 (Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns)

  • 권혁진;양근혁;홍승현
    • 콘크리트학회논문집
    • /
    • 제29권3호
    • /
    • pp.291-298
    • /
    • 2017
  • 이 연구에서는 강재 기둥과 접합된 하이브리드 H-보-철근 콘크리트 보(HSRC)의 반복 휨 거동을 평가하였다. 실험 변수는 HSRC 보의 연결절점에 배근되는 장부철근의 유무이다. HSRC 보의 소성힌지는 RC 보보다는 기둥 접합부 부근의 H-보에서 형성되도록 유도하였다. 모든 실험체는 하중의 급격한 감소 없이 연성적인 거동을 보였으며, 비록 예상치 못한 H-기둥과 H-보 용접 접합부의 파괴가 발생하였지만, 결과적으로 4.6 이상의 변위연성비를 나타내었다. HSRC 보 시스템에서 RC 보의 균열진전, 휨 강도 및 연성에 대한 장부철근의 영향은 매우 미미하였다. HSRC 보 시스템의 휨 강도는 단면의 완전소성으로 가정하여 산정한 H-보의 최대 휨 내력에 비해 안전 측에서 평가될 수 있었다.