• 제목/요약/키워드: perfect k-ary tree

검색결과 1건 처리시간 0.024초

SECURE DOMINATION PARAMETERS OF HALIN GRAPH WITH PERFECT K-ARY TREE

  • R. ARASU;N. PARVATHI
    • Journal of applied mathematics & informatics
    • /
    • 제41권4호
    • /
    • pp.839-848
    • /
    • 2023
  • Let G be a simple undirected graph. A planar graph known as a Halin graph(HG) is characterised by having three connected and pendent vertices of a tree that are connected by an outer cycle. A subset S of V is said to be a dominating set of the graph G if each vertex u that is part of V is dominated by at least one element v that is a part of S. The domination number of a graph is denoted by the γ(G), and it corresponds to the minimum size of a dominating set. A dominating set S is called a secure dominating set if for each v ∈ V\S there exists u ∈ S such that v is adjacent to u and S1 = (S\{v}) ∪ {u} is a dominating set. The minimum cardinality of a secure dominating set of G is equal to the secure domination number γs(G). In this article we found the secure domination number of Halin graph(HG) with perfet k-ary tree and also we determined secure domination of rooted product of special trees.