• Title/Summary/Keyword: per unit area

Search Result 1,124, Processing Time 0.032 seconds

Development and Field-evaluation of Automatic Spreader for Bedding Materials in Duck Houses (오리사 바닥 깔짚자동살포장치 개발 및 실증)

  • Kwon, Kyeong-seok;Woo, Jae-seok;Noh, Je-hee;Oh, Sang-ik;Kim, Jong-bok;Kim, Jung-kon;Yang, Kayoung;Jang, Donghwa;Choi, Sungmin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.37-48
    • /
    • 2021
  • The automatic-spreader of bedding materials was developed to reduce labor cost, and to achieve successful biosecurity in duck houses. Algorithm of the device was designed to realize a concept of the automatic unmanned operation including entire processes such as loading and spreading of the bedding materials. From the field measurement, the relationship between the expected water content reduction and weight of bedding materials per unit area according to the operation condition of the devices was induced. In the case of the measurement of particulate matters during the process of spreading works, the results of using both conventional manual-spreader and automatic-spreader were exceeded the allowable limit of inhalable and respirable dust, respectively. But, workers using automatic-spreader could be free from harmful aero-condition because they did not stay inside the facility during the spreading works. In addition, from the Duck hepatitis virus PCR test, influence on pulmonary tissue of the duck was not found. It could be expected that the development of the automatic-spreader of bedding materials for duck house can contribute to the advancement of duck breeding facilities.

Experimental Study on Response Characteristics of Reinforced Concrete Buildings Due to Waterborne Debris Impact Loads (해일표류물의 충돌에 의한 철근콘크리트 건축물의 응답특성에 관한 실험적 연구)

  • Choi, Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.590-595
    • /
    • 2020
  • In this study, the small-scale collision experiments using a pendulum principle were carried out to evaluate the safety of the reinforced concrete building selected as a tsunami evacuation building due to the collision of the waterborne debris represented by ships. The experimental parameters were set as impact velocity, mass and length of the drifted ship. In this paper, the maximum impact force, impact duration, impact waveform and restitution coefficient affecting building response were investigated in detail. As a result, the impact force waveforms were distributed as a triangle in most of the experimental results, but became closer to a trapezoid as the length of the collision specimen increased. This is the very important result in calculating the momentum (impact waveform area) affecting building response, Furthermore, the restitution coefficients were constant regardless of the impact velocity, but they varied depending on the mass and length of the waterborne debris. However, the restitution coefficient for the mass per unit length of the waterborne debris can be evaluated.

Effect of Urban Parks on Carbon and PM2.5 Reduction in Gangneung

  • Choi, Seong-Gyeong;Jo, Hyun-Kil
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.1
    • /
    • pp.64-73
    • /
    • 2022
  • Increasing carbon and PM2.5 concentrations have been emerging as serious environmental issues worldwide. The purpose of this study was to quantify carbon and PM2.5 reduction by urban parks in Gangneung, Korea. A total of 35 parks were sampled by applying a random sampling method to survey tree planting structures and the areal distribution of land cover types of urban parks. These survey data and the Green Evaluation Technique (GET) computer program were used to estimate carbon and PM2.5 reduction by trees. Mean tree density and cover in the study parks were 3.5±0.2 tree/100 m2 and 44.5±3.0%, respectively. Annual carbon uptake and PM2.5 deposition per unit area by trees averaged 2.8±0.2 t/ha/yr and 30.2±2.8 kg/ha/yr. Gangneung's urban parks annually offset the carbon emissions by 3.4% and the PM2.5 emissions by 3.5%. Thus, urban parks played a significant role in reducing atmospheric carbon and PM2.5 concentrations. Total annual carbon uptake and PM2.5 deposition of urban parks in Gangneung were about 1,338.2 t/yr and 14,433.2 kg/yr. This study is expected to contribute to raising awareness of the role and importance of urban parks regarding carbon and PM2.5 reduction.

The effects of knit stitches on the knit construction and the dimensional stability to washing and drying of wool weft-knitted fabrics (세탁과 건조에 따른 양모 위편성물의 편성조직별 형태 변화)

  • Park, Seeun;Baek, Seong Phil;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • The purpose of this study is to analyze the structural properties of 100% wool fabrics knitted with various stitch types and to evaluate dimensional stability from shrinkage in wet cleaning and drying. Materials were weft-knitted from twenty-four different stitches with 7 gauge using a computerized flatbed knitting machine. Weight, thickness, density, and length were measured. A domestic washing machine and a tumble dryer were used for the shrinkage test. The results are as follows: Knitted fabrics were divided into 3 groups based on weight per unit area. Porous knits show light weight whilst milano, pintuck, rib stitches belong to the heaviest group. A positive correlation between weight and thickness was found and the same result was obtained for wale density and weight. Dimensional shrinkage of knitted fabrics was increased during repetitive wet cleaning and drying regardless of knit stitches. Especially, fabrics knitted with float, tuck, cable, and links & links stitches samples were contracted more than 15% in the first treatment whereas 2x1 rib stitch showed 1% shrinkage rate. Fisherman and milano stitches contracted in both course and wale direction with similar shrinkage rates. However, porous knits with float and tuck stitches shrank in course direction by 20% as well as cable samples contracted from 5% to 20% after repeated washing and drying. On the other hand, 30% and 15% contraction of wale direction occurred in orderly float and links & links stitches, respectively. Machine dried knits have a higher shrinkage rate than air-dried knits, but the drying method did not affect to the direction of contraction. In conclusion, variations of knit, tuck, and float stitches affect knit construction and dimensional stability from shrinkage in wet cleaning and drying of wool knitted fabrics.

Characteristics of Changes in Species Composition with Water Temperature in Set Net Fishing on the Southern Coast of the East Sea (동해 남부 연안 정치망어업의 수온에 따른 종조성 변동 특성 연구)

  • Song, Hyejin;Song, Young Sun;Hwang, Kangseok;Sohn, Dongwha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.625-637
    • /
    • 2022
  • The southern coast of the East Sea is an important area affected by large warm currents as it connects the coastal waters of Jeju Island, the South Sea, and Dokdo. From 2017 to 2021, the average catch per unit effort (CPUE; kg/day/ship) of set net fishery at six ports in the Gyeongbuk region off the southern coast of the East Sea was the highest in Gampo, Gyeongju, and the lowest in Hupo, Uljin. Although the seasonal variation in the CPUE differed by region and year, it was generally high in autumn. In the set net fishery in Pohang from 2019 to 2021, we identified 72 species, which decreased to 56 species in 2019, 46 in 2020, and 41 in 2021. The species diversity index slightly increased over the three-year periods. We found positive correlations between the total catch (kg) of subtropical species in autumn and the water temperature at 50 m. Among the most abundant species, we found substantially positive correlations between the CPUE of Scomber japonicus, Scomberomous spp. and Carangids. We also noted positive correlations between the CPUE of Todarodes pacificus, Seriola spp. and Carangids.

Estimation of Forest Carbon Stock in South Korea Using Machine Learning with High-Resolution Remote Sensing Data (고해상도 원격탐사 자료와 기계학습을 이용한 한국 산림의 탄소 저장량 산정)

  • Jaewon Shin;Sujong Jeong;Dongyeong Chang
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.61-72
    • /
    • 2023
  • Accurate estimation of forest carbon stocks is important in establishing greenhouse gas reduction plans. In this study, we estimate the spatial distribution of forest carbon stocks using machine learning techniques based on high-resolution remote sensing data and detailed field survey data. The high-resolution remote sensing data used in this study are Landsat indices (EVI, NDVI, NDII) for monitoring vegetation vitality and Shuttle Radar Topography Mission (SRTM) data for describing topography. We also used the forest growing stock data from the National Forest Inventory (NFI) for estimating forest biomass. Based on these data, we built a model based on machine learning methods and optimized for Korean forest types to calculate the forest carbon stocks per grid unit. With the newly developed estimation model, we created forest carbon stocks maps and estimated the forest carbon stocks in South Korea. As a result, forest carbon stock in South Korea was estimated to be 432,214,520 tC in 2020. Furthermore, we estimated the loss of forest carbon stocks due to the Donghae-Uljin forest fire in 2022 using the forest carbon stock map in this study. The surrounding forest destroyed around the fire area was estimated to be about 24,835 ha and the loss of forest carbon stocks was estimated to be 1,396,457 tC. Our model serves as a tool to estimate spatially distributed local forest carbon stocks and facilitates accounting of real-time changes in the carbon balance as well as managing the LULUCF part of greenhouse gas inventories.

Evaluation of Cell Based Anti-oxidation Assay of Functional Components Derived from Domestic Major Potato Varieties

  • Jung Hwan Nam;Su Young Hong;Su Jeong Kim;Hwang Bae Sohn;Yul Ho Kim;Kyung Tea Lee;Soo jin Park;Jae Kwon Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.75-75
    • /
    • 2020
  • Potatoes were first introduced outside the Andes region four centuries ago, and have become an integral part of much of the world's food. Potatoes were first introduced into Europe in the 16th century and Korea in the early 19th century. Potatoes have a short growing season, high production per unit area, relatively strong environmental adaptability, and are cultivated in more than 130 countries around the world. It is the world's fourth-largest crop, following rice, wheat, bean and maize. In the nutritional aspects, potatoes contain abundant vitamins and minerals, as well as an assortment of phytochemicals such as carotenoids and natural phenols. Due to the high content of potato functional compounds, it has known that potatoes are effective in the prevention of various human diseases. In particular, the potato contains a large amount of polar compounds, including the saponin in the polar compounds, and the physiological activity of the saponins, such as immunity enhancement, antioxidant and anti-inflammatory is known. In this study, the antioxidative activity of polar compounds from five potatoes was examined by cell based anti-oxidation assay. The smallest amount of ROS(Reactive oxygen species) was generated when the compound was derived from 'Haryung' and 'hongyoung' and strong SOD(Superoxide dismutase) activity was observed in 'Sumi' and 'Jayoung'. The results of this study reveal the antioxidative effect of polar compounds extracted from various kind of potatoes, which will enable the acquisition of new bioactive candidates and the establishment of new profit generation models for farmers

  • PDF

Prediction of Fire Curves Considering the Relationship between Mass Increase and Combustion Time of Combustibles (연소물의 질량증가와 연소시간의 상관관계를 고려한 화재곡선 예측)

  • Eun-Joon Nam;Tae-Il Lee;Goang-Seup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In this paper, we aimed to convert the fire curve in volume units to a fire curve per unit area for application in the Fire Dynamic Simulator (FDS) surface heat release rate method. The fire curve was expressed dimensionlessly considering the total combustion characteristic time, and improvements were made to represent the appropriate ratios for the growth , steady, and decay phases concerning the fire intensity. Additionally, a correction function for combustion characteristic time varying with mass increase was derived. Also to control the growth time values according to the increase in mass, a function to correct the growth phase ratio was derived. Consequently, utilizing existing data, a formula was established to determine the reference mass for combustion materials and predict the fire curve based on mass increase.

Energy Performance and Operating Cost Assessment for Implementing Green Remodeling Technologies in a Detached House (단독주택 건물 그린리모델링에 따른 건물 에너지 성능과 운전비용 절감 효과 평가)

  • Byonghu Sohn;Su-In Lee;Jae-Sik Kang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.27-38
    • /
    • 2023
  • The Government the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of buildings and to promote green growth policy in construction sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. Green remodeling reinforced the insulation of the exterior walls and roofs of the buildings and replaced high-efficiency windows and doors. In this study, the energy performance before and after green remodeling applied in a detached house was comparatively analyzed for baseline scenario and three different ones, ALT 1, ALT 2 and ALT 3. A building modeling and simulation software (DesignBuilder V7.0) with EnergyPlus (V9.4) calculation engine was used to calculate the energy demand and energy consumption for each scenario. Based on the calculation results of the building's energy demand for baseline, it was determined that the target building required more heating energy than cooling energy. The simulation results also showed that the implementation of building envelope performance improvement technologies (ALT 1) could notably decrease the heating energy consumption of the building. After the remodeling (ALT 1), the source energy consumption per unit floor area was assessed to be reduced by 65.2%, compared to prior remodeling of 338.7 kWh/m2 -y. Meanwhile, ALT 2 can achieve energy savings of 67.7% and ALT 3 can achieve savings of 73.1%. Following completion of the remodeling project, actual construction costs, and on-site measurements and verification results will be gathered and compared with the simulation results. Additionally, economic analysis including construction costs and payback period will be conducted using actual site data.

Development of a Solar Collector Performance of Cylindrical Parabolic Concentrating Solar Collector (태양열(太陽熱) 집열기개발(集熱器開發)에 관(關)한 연구(硏究) - 포물반사곡면(抛物反射曲面)으로된 2차원(二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 성능분석(性能分析) -)

  • Song, Hyun Kap;Yon, Kwang Seok;Cho, Sung Chan
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.54-68
    • /
    • 1985
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. So far the concentrating solar collector has been developed to collect solar thermal energy at relatively high temperature, but it has some difficulties in maintaining the volumetric body of solar collector for long term utilization. On the other hand, the flat-plate solar collector has been developed to collect the solar thermal energy at low temperature, and it has advantages in maintaining the system for long term utilization, since it's thickness is thin and not volumetric. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolic concentrating solar collector was designed, which has two rows of parabolic reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The characteristics of the concentrating parabolic solar collector newly designed was analysed and the results are summarized as follows; 1. The temperature of the air enclosed in solar collector was all the same as $50^{\circ}C$ in both cases of the open and closed loop, and when the heat transfer fluid was not circulated in tubular absorber, the maximum surface temperature of the absorber was $118-120^{\circ}C$, this results suggested that the heat transfer fluid could be heated up to $118^{\circ}C$. 2. In case of longitudinal installation of the solar collector, the temperature difference of heat transfer fluid between inlet and outlet was $4^{\circ}-6^{\circ}C$ at the flow rate of $110-130{\ell}/hr$, and the collected solar energy per unit area of collector was $300-465W/m^2$. 3. The collected solar energy per unit area for 7 hours was 1960 Kcal/$m^2$ for the open loop and 220 Kcal/$m^2$ for the closed loop. Therefore it is necessary to combine the open and closed loop of solar collectors to improve the thermal efficiency of solar collector. 4. The thermal efficiency of the solar collector (C.P.C.S.C.) was proportional to the density of solar radiation, indicating the maximum thermal efficiency ${\eta}_{max}=58%$ with longitudinal installation and ${\eta}_{max}=45%$ with lateral installation. 5. The thermal efficiency of the solar collector (C.P.C.S.C.) was increased in accordance with the increase of flow rate of heat transfer fluid, presenting the flow rate of $110{\ell}/hr$ was the value of turning point of the increasing rate of the collector efficiency, therefore the flow rate of $110{\ell}/hr$ was considered as optimum value for the test of the solar collector (C.P.C.S.C.) performance when the heat transfer fluid is a liquid. 6. In both cases of longitudinal and lateral installation of the solar collector (C.P.C.S.C.), the thermal efficiency was decreased linearly with an increase in the value of the term ($T_m-T_a$)/Ic and the increasing rate of the thermal efficiency was not effected by the installation method of solar collector.

  • PDF