• 제목/요약/키워드: peptide inhibitor

검색결과 220건 처리시간 0.021초

Characterization of a New Anti-dementia β-secretase Inhibitory Peptide from Arctoscopus japonicus

  • Park, Seul Bit Na;Kim, Sung Rae;Byun, Hee-Guk
    • 한국키틴키토산학회지
    • /
    • 제23권4호
    • /
    • pp.220-227
    • /
    • 2018
  • Amyloid plaque is a product of aggregation of ${\beta}$-amyloid peptide ($A{\beta}$) and is an important factor in the pathogenesis of Alzheimer's Disease (AD). $A{\beta}$ is a major component of amyloid plaque and vascular deposits in the AD brain. The enzyme ${\beta}$-secretase is required for the production of $A{\beta}$; thus, prevention of the formation of $A{\beta}$ through the inhibition of ${\beta}$-secretase is a major focus in the study of the treatment of AD. In this study, we investigated ${\beta}$-secretase inhibitory activity of an Arctoscopus japonicus peptide. An Alcalase hydrolysate had the highest ${\beta}$-secretase inhibitory activity. A ${\beta}$-secretase inhibitory activity peptide was separated using ion exchange column chromatography (carboxy-methyl: CM, quaternary methyl ammonium: QMA) and reverse phase high performance liquid chromatography (RP-HPLC) on a C18 column. The $IC_{50}$ value of the purified peptide was $248.2{\pm}1.73{\mu}g/mL$. The ${\beta}$-secretase inhibitory peptide was identified as a six amino acid residue of Gly-Pro-Val-Gly-Ala-Pro (MW: 497.27 Da). In cell viability experiments, the final purified fraction, the carboxy-methyl ion exchange column fraction (CM-F1) showed no significant cytotoxic effect in SH-SY5Y cells at concentrations below $100{\mu}g/mL$ in 24 h. The results of this study suggest that peptides separated from Arctoscopus japonicus may be beneficial as ${\beta}$-secretase inhibitor compounds in functional foods.

A Highly Effective and Long-Lasting Inhibition of miRNAs with PNA-Based Antisense Oligonucleotides

  • Oh, Su Young;Ju, YeongSoon;Park, Heekyung
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.341-345
    • /
    • 2009
  • MiRNAs are non-coding RNAs that play a role in the regulation of major processes. The inhibition of miRNAs using antisense oligonucleotides (ASOs) is a unique and effective technique for the characterization and subsequent therapeutic targeting of miRNA function. Recent advances in ASO chemistry have been used to increase both the resistance to nucleases and the target affinity and specificity of these ASOs. Peptide nucleic acids (PNAs) are artificial oligonucleotides constructed on a peptide-like backbone. PNAs have a stronger affinity and greater specificity to DNA or RNA than natural nucleic acids and are resistant to nucleases, which is an essential characteristic for a miRNA inhibitor that will be exposed to serum and cellular nucleases. For increasing cell penetration, PNAs were conjugated with cell penetrating peptides (CPPs) at N-terminal. Among the tested CPPs, Tat-modified peptide-conjugated PNAs have most effective function for miRNA inhibition. PNA-based ASO was more effective miRNA inhibitor than other DNA-based ASOs and did not show cytotoxicity at concentration up to 1,000 nM. The effects of PNA-based ASOs were shown to persist for 9 days. Also, PNA-based ASOs showed considerable stability at storage temperature. These results suggest that PNA-based ASOs are more effective ASOs of miRNA than DNA-based ASOs and PNA-based ASO technology, compared with other technologies used to inhibit miRNA activity can be an effective tool for investigating miRNA functions.

Structure Characterization and Antihypertensive Effect of an Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler

  • Seung Tae Im;Seung-Hong Lee
    • 한국축산식품학회지
    • /
    • 제43권1호
    • /
    • pp.184-194
    • /
    • 2023
  • Recently, interest in food-derived bioactive peptides as promising ingredients for the prevention and improvement of hypertension is increasing. The purpose of this study was to determine the structure and antihypertensive effect of an antioxidant peptide purified from velvet antler in a previous study and evaluate its potential as a various bioactive peptide. Molecular weight (MW) and amino acid sequences of the purified peptide were determined by quadrupole time-of-flight electrospray ionization mass spectroscopy. The angiotensin I-converting enzyme (ACE) inhibition activity of the purified peptide was assessed by enzyme reaction methods and in silico molecular docking analysis to determine the interaction between the purified peptide and ACE. Also, antihypertensive effect of the purified peptide in spontaneously hypertensive rats (SHRs) was investigated. The purified antioxidant peptide was identified to be a pentapeptide Asp-Asn-Arg-Tyr-Tyr with a MW of 730.31 Da. This pentapeptide showed potent inhibition activity against ACE (IC50 value, 3.72 μM). Molecular docking studies revealed a good and stable binding affinity between purified peptide and ACE and indicated that the purified peptide could interact with HOH2570, ARG522, ARG124, GLU143, HIS387, TRP357, and GLU403 residues of ACE. Furthermore, oral administration of the pentapeptide significantly reduced blood pressure in SHRs. The pentapeptide derived from enzymatic hydrolysate of velvet antler is an excellent ACE inhibitor. It might be effectively applied as an animal-based functional food ingredient.

Streptomyces chromofuscus SMF28을 이용한 Cathepsin B 저해물질의 발효생산 및 특성분석 (Production and Characterization of Cathepsin B Inhibitor from Streptomyces chromofuscus SMF28)

  • 이현숙;김인섭;윤성준;이계준
    • 한국미생물·생명공학회지
    • /
    • 제23권5호
    • /
    • pp.602-608
    • /
    • 1995
  • The aim of the present research program was to construct an optimum fermentation system and to characterize the properties of cathepsin B inhibitor from Streptomyces chromofuscus SMF28. Glucose and casitone were proved to be good carbon source and nitrogen source, respectively. The production of inhibitor was high at lower concentration than 10 mM of inorganic phosphate. The optimum temperature and pH for the production of inhibitor were 30$\circ$C and pH 7, respectively. The production of inhibitor was related to mycelial growth and was affected by medium composition. The inhibitor in culture filtrate of S. chromofuscus SMF28 was purified by butanol extraction, silica gel chromatography, Amberlite IRC-50 (H$^{+}$ form) chromatography, preparative TLC, and preparative HPLC. From amino acid analysis and UV, IR, $^{1}$H-NMR spectroscopic analysis, the inhibitor was identified as a peptide containing valine and phenylalanine derivative.

  • PDF

Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

  • Hur, Jeonghwan;Ghosh, Ambarnil;Kim, Kabsun;Ta, Hai Minh;Kim, Hyunju;Kim, Nacksung;Hwang, Hye-Yeon;Kim, Kyeong Kyu
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.316-321
    • /
    • 2016
  • The receptor activator of nuclear factor ${\kappa}B$ (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.

Purification and characterization of β-secretase inhibitory peptide from sea hare (Aplysia kurodai) by enzymatic hydrolysis

  • Lee, Jung Kwon;Kim, Sung Rae;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제21권5호
    • /
    • pp.13.1-13.8
    • /
    • 2018
  • Amyloid plaque, also called senile plaque, the product of aggregation of ${\beta}$-amyloid peptides ($A{\beta}$), is observed in brains of the patients with Alzheimer's disease (AD) and is one of the key factors in etiology of the disease. In this study, hydrolysates obtained from the sea hare (Aplysia kurodai) were investigated for ${\beta}$-secretase inhibitory peptide. The sea hare's muscle protein was hydrolyzed using six enzymes in a batch reactor. Trypsin hydrolysate had highest ${\beta}$-secretase inhibitory activity compared to the other hydrolysates. ${\beta}$-secretase inhibitory peptide was separated using Sephadex G-25 column chromatography and high-performance liquid chromatography on a C18 column. ${\beta}$-secretase inhibitory peptide was identified as eight amino acid residues of Val-Ala-Ala-Leu-Met-Leu-Phe-Asn by N-terminal amino acid sequence analysis. $IC_{50}$ value of purified ${\beta}$-secretase inhibitory peptide was $74.25{\mu}M$, and Lineweaver-Burk plots suggested that the peptide purified from sea hare muscle protein acts as a competitive inhibitor against ${\beta}$-secretase. Results of this study suggest that peptides derived from sea hare muscle may be beneficial as anti-dementia compounds in functional foods or as pharmaceuticals.

The N-terminal peptide of the main protease of SARS-CoV-2, targeting dimer interface, inhibits its proteolytic activity

  • Sunyu Song;Yeseul Kim;Kiwoong Kwak;Hyeonmin Lee;Hyunjae Park;Young Bong Kim;Hee-Jung Lee;Lin-Woo Kang
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.606-611
    • /
    • 2023
  • The main protease (Mpro) of SARS-CoV-2 cleaves 11 sites of viral polypeptide chains and generates essential non-structural proteins for viral replication. Mpro is an important drug target against COVID-19. In this study, we developed a real-time fluorometric turn-on assay system to evaluate Mpro proteolytic activity for a substrate peptide between NSP4 and NSP5. It produced reproducible and reliable results suitable for HTS inhibitor assays. Thus far, most inhibitors against Mpro target the active site for substrate binding. Mpro exists as a dimer, which is essential for its activity. We investigated the potential of the Mpro dimer interface to act as a drug target. The dimer interface is formed of domain II and domain III of each protomer, in which N-terminal ten amino acids of the domain I are bound in the middle as a sandwich. The N-terminal part provides approximately 39% of the dimer interface between two protomers. In the real-time fluorometric turn-on assay system, peptides of the N-terminal ten amino acids, N10, can inhibit the Mpro activity. The dimer interface could be a prospective drug target against Mpro. The N-terminal sequence can help develop a potential inhibitor.

Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity

  • Kim, Hyung Sik;Park, Min Young;Lee, Sung Kyun;Park, Joon Seong;Lee, Ha Young;Bae, Yoe-Sik
    • BMB Reports
    • /
    • 제51권8호
    • /
    • pp.418-423
    • /
    • 2018
  • Emergency granulopoiesis is a very important strategy to supply efficient neutrophil number in response to infection. However, molecular mechanism involved in this process remains unclear. Here, we found that administration of WKYMVm, an immune modulating peptide, to septic mice strongly increased neutrophil number through augmented emergency granulopoiesis. WKYMVm-induced emergency granulopoiesis was blocked not only by a formyl peptide receptor 2 (FPR2) antagonist (WRW4), but also by FPR2 deficiency. As progenitors of neutrophils, $Lin^-c-kit^+Sca-1^-$ cells expressed FPR2. WKYMVm-induced emergency granulopoiesis was also blocked by a phospholipase C inhibitor (U-73122). These results suggest that WKYMVm can stimulate emergency granulopoiesis via FPR2 and phospholipase C enzymatic activity.

Inhibition of C-terminal O-Methyltransferase by a Rat Liver Cytosolic Peptide

  • Park, Seung-Hee;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제17권5호
    • /
    • pp.354-359
    • /
    • 1994
  • The activity of SD-framesylcysteine O-methyltransferase was assayed by incubating the enzyrne with a synthetic in vitro substrate, [N-acetyl-S-trans, trns-famesyl-L-cysteine (AFC)], together with S-adenosyl-L-[emthyl-$_{14}$C)ester(AFCME)], was then analyzed either directly on HPLC or by converting the AFC[$methyl^{14}C$]ME to [$methyl^{14}C$] aclcohol by basehydrolysis. Employing these two analytical methods, it was established that a peptide purifed from rat liver cytosol fraction [Int. J. Biochem., 25, 1157 919930] strongly inhibited the above enzyme activity with $IC_{50}\; of\; 7.1\times 10^{-8}$ M. Also, the S-famesylcysteine O-methyltransferase from several human colon cancer cells was equally inhibited by the peptide.

  • PDF

The Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Rainbow Trout Muscle Hydrolysate

  • Kim, Sung-Rae;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제15권3호
    • /
    • pp.183-190
    • /
    • 2012
  • The purpose of this study was the purification and characterization of an angiotensin I converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of rainbow trout Oncorhynchus mykiss muscle. After removal of lipid, the approximate composition analysis of the rainbow trout revealed 24.4%, 1.7%, and 68.3% for protein, lipid, and moisture, respectively. Among six hydrolysates, the peptic hydrolysate exhibited the highest ACE inhibitory activity. We attempted to purify ACE inhibitory peptides from peptic hydrolysate using high performance liquid chromatography on an ODS column. The $IC_{50}$ value of purified ACE inhibitory peptide was $63.9{\mu}M$. The amino acid sequence of the peptide was identified as Lys-Val-Asn-Gly-Pro-Ala-Met-Ser-Pro-Asn-Ala-Asn, with a molecular weight of 1,220 Da, and the Lineweaver-Burk plots suggested that they act as a competitive inhibitor against ACE. Our study suggested that novel ACE inhibitory peptides purified from rainbow trout muscle protein may be beneficial as anti-hypertension compounds in functional foods.